

# Multi-Criteria Decision Making in Industry 4.0: a Systematic Literature Review and Bibliometric Analysis

Maria Grazia Olivieri<sup>1,\*</sup> and Elisa Fiorenza<sup>2</sup>

<sup>1</sup>University of study eCampus, Italy.

<sup>2</sup>Universitas Mercatorum, Italy

**Abstract:** The application of Multi-Criteria Decision-Making (MCDM) methods in Industry 4.0 is increasingly important as organizations face complex decisions related to digital transformation, automation, and sustainability. This study presents a systematic literature review and bibliometric analysis of 256 peer-reviewed articles published between 2011 and 2024, focusing on how MCDM techniques support decision-making in Industry 4.0 contexts. The analysis reveals that the Analytical Hierarchy Process (AHP), TOPSIS, VIKOR, and PROMETHEE are the most frequently applied methods, often integrated with fuzzy logic to handle uncertainty. Key application areas include production planning, supply chain optimization, energy management, and AI-driven automation. Through co-citation and keyword network analysis using Bibliometrix in R, four main thematic clusters were identified, highlighting trends in sustainability, robotics, and data-driven decision-making. The study also underscores the increasing role of hybrid models that combine MCDM with advanced analytic. These findings provide valuable insights for both researchers and practitioners aiming to leverage MCDM tools in the evolving landscape of Industry 4.0.

**Keywords:** MCDM, industry 4.0, bibliometric analysys, co-citation networks.

## 1. INTRODUCTION

Industry 4.0, through the advanced integration of digital technologies such as big data, Internet of Things (IoT), robotics and automation, artificial intelligence (AI), has transformed production processes. These interconnected and complex systems require sophisticated management and innovative solutions to address decision-making problems characterized by multiple criteria and conflicting objectives. Multi-Criteria Decision-Making (MCDM) methods have proven to be a useful tool to help make decisions in complex situations, that is, situations in which a balance of the different factors at play is required to optimize the results. In our work, we analyze the evolution and application of multi-criteria methods in the context of Industry 4.0, highlighting the main contexts of application of the tools, the prevalent techniques, the advantages and the associated challenges. The review indicates that MCDM methods are applied across numerous complex Industry 4.0 contexts, confirming their widespread relevance; specifically, the areas of greatest application are the optimization of production processes, supply chain management, sustainability. Among the most used MCDM methods, the AHP, TOPSIS, VIKOR and PROMETHEE methods stand out; they allow us to address the complexities and uncertainties that characterize modern industrial situations. The combination of these methods with fuzzy techniques and the analysis of uncertain data (such as Gray Relational Analysis) are fundamental tools for making informed decisions in environments with high technological

and dynamic complexity. The most used method is certainly the AHP, known for its ability to structure complex problems hierarchically, assigning weights to the various criteria and comparing the alternatives based on their values; the AHP is mainly used for technology selection problems, supplier performance evaluation and production system design. In the literature, AHP has been used to compare and choose between emerging technologies such as 3D printing (Shahrubudin, N., 2021), collaborative robotics and IoT (Kim, C. & Won, J. S., 2020), based on economic, operational and technological criteria. Again, AHP has been used to support the selection of the most suitable technologies for a smart industrial plant, considering factors such as implementation costs, compatibility with the existing system and the ability to improve operational efficiency (Moghaddam et al., 2022). Another widely used method is the TOPSIS method, its field of application mainly concerns supplier selection, evaluation of automation solutions and energy resource management in smart industrial environments. TOPSIS is based on the idea of identifying the alternative that is closest to the ideal solution and furthest from the worst solution. It is particularly appreciated for its simplicity and ability to provide easily interpretable results. Zhang et al. (2022) applied TOPSIS for the selection of intelligent monitoring systems in automated manufacturing environments, considering variables such as accuracy, cost, and reliability. The TOPSIS method has also been employed to optimize supply chain management in highly variable manufacturing environments, simultaneously considering quality, lead time, and cost (Zhou et al., 2021). VIKOR is used to solve trade-off problems between different optimal solutions in complex industrial scenarios, such as production process selection or

\*Address correspondence to this author at the University of study eCampus, Italy; Tel: +39 328 1520929; E-mail: mariagrazia.olivieri@uniecampus.it

production planning in contexts with conflicting criteria. The method aims to find a balance between alternatives, considering stakeholder preferences and the priorities of different criteria. The VIKOR method has been used in several applications in Industry 4.0 to manage production performance and select optimal solutions when there are conflicting criteria. In the research of Lee et al. (2023) and Salini et al. (2021), VIKOR has been used for supplier selection, ERP system evaluation, and to optimize automated workflows in flexible manufacturing contexts. The combination of AHP and TOPSIS methods with fuzzy logic is very popular in Industry 4.0, where data and preferences are often uncertain or vague. These methods are used to evaluate emerging technologies, complex production processes, and IoT solutions, where managing uncertainty plays a crucial role. Fuzzy methods allow us to express more realistically the uncertainty and ambiguity typical in these contexts. Tran, N. T. et al. (2024) in their study presents an effective MCDM model that integrates Fuzzy-AHP-TOPSIS to evaluate and choose the best robot. The PROMETHEE method is used to rank alternatives according to different criteria to obtain a hierarchy of preferences. It is widely used for material selection, supply chain optimization and production operations management in Industry 4.0, where the need to balance various often conflicting criteria is a central issue. According to Torbacki, W. (2021), presents how the DANT and PROMETHEE II methods are integrated to overcome the problem of cybersecurity in the information flow process within companies participating in the modern production process in the era of sustainable production. In recent years, advanced applications combining MCDM with evolutionary optimization techniques (such as genetic algorithms) have emerged. These approaches have been used to optimize production planning in highly variable environments and to solve complex scheduling problems in scenarios with multiple conflicting objectives (Tavana et al., 2021). These approaches allow simulating multiple scenarios and analyzing the impact of different choices on the overall performance of the production system (Wang et al., 2023). In our work we try to understand how quantitative methodologies of multi-criteria decision analysis are used in diversified realities. To comprehend and arrange the findings, researchers employ a variety of qualitative and quantitative literature review methodologies. A systematic, transparent, and repeatable evaluation process based on the statistical measurement of science, scientists, or scientific activity is one of the possible benefits of bibliometrics (Broadus, 1987, Diodato, 1994, Pritchard, 1969). Bibliometrics offers more trustworthy and objective assessments than other methods. To understand the current state of the scientific landscape on the topic and the evolution of future research, it is necessary to conduct a systematic review of the literature. This review aims to provide a broad theoretical background on the use of MCDM, taking into account the studies that have already been conducted. The aim of this work is to describe, explore and classify how MCDM methods are used to solve problems in a new and complex field, such as sustainability and therefore industry 4.0. We also intend to verify whether and how decision makers intervene in the construction of an MCDM method. The paper is organized as follows: Section 2 defines the materials and methods; Section 3 reports the main results; Section 4 concludes the paper.

## 2. MATERIALS AND METHODS

The present study adopts a systematic literature review approach following PRISMA guidelines, combined with bibliometric and co-citation analyses, to investigate the role of Multi-Criteria Decision-Making (MCDM) methods in Industry 4.0. The methodology unfolds in three main stages (see Fig. 1):

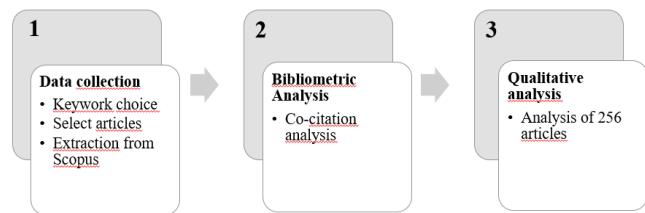



Fig. (1). Main steps of the research.

### 2.1. Data Collection

The selection process was designed to ensure the inclusion of high-quality, relevant, and methodologically consistent studies. The initial dataset was compiled from the Web of Science database using a comprehensive keyword strategy. Keywords included: "Industry 4.0", "MCDM", "sustainability", "smart manufacturing", "supply chain optimization", "IoT decision-making", and related phrases, searched across titles, abstracts, and full texts. The search covered articles published between 2011 and 2024, aligning with the emergence and evolution of Industry 4.0. To focus on technically and methodologically relevant literature, articles were limited to journals categorized under: (1) Decision Sciences, (2) Engineering, (3) Computer Science, (4) Business, Management and Accounting and (5) Mathematics. From an initial pool of 52,562 documents, filtering by source type and subject area yielded 945 articles. Studies that did not use quantitative MCDM methods (e.g., purely descriptive or theoretical works) were excluded. Titles and abstracts were reviewed manually to ensure alignment with the research scope, resulting in a final selection of 256 peer-reviewed articles.

### 2.2. Bibliometric Analysis and Data Analysis

Bibliometric analysis was conducted using R's Bibliometrix package to assess publication trends, citation patterns, and author productivity (Aria et al., 2017). Co-citation analysis was then employed to uncover thematic relationships among studies. Two documents are considered co-cited when they appear together in the references of a third article. The frequency of such pairings reflects thematic or conceptual proximity. About Cluster detection, the Louvain community detection algorithm was applied to the co-citation network to identify clusters-groups of closely interconnected authors or articles. These clusters reveal major research areas and schools of thought within the field. A co-word analysis was also conducted to identify frequently associated terms, enabling the mapping of thematic clusters based on terminology. Through the integration of co-citation patterns and qualitative analysis of article content, four main thematic clusters were identified. Each cluster represents a coherent

research focus within the broader topic of MCDM in Industry 4.0:

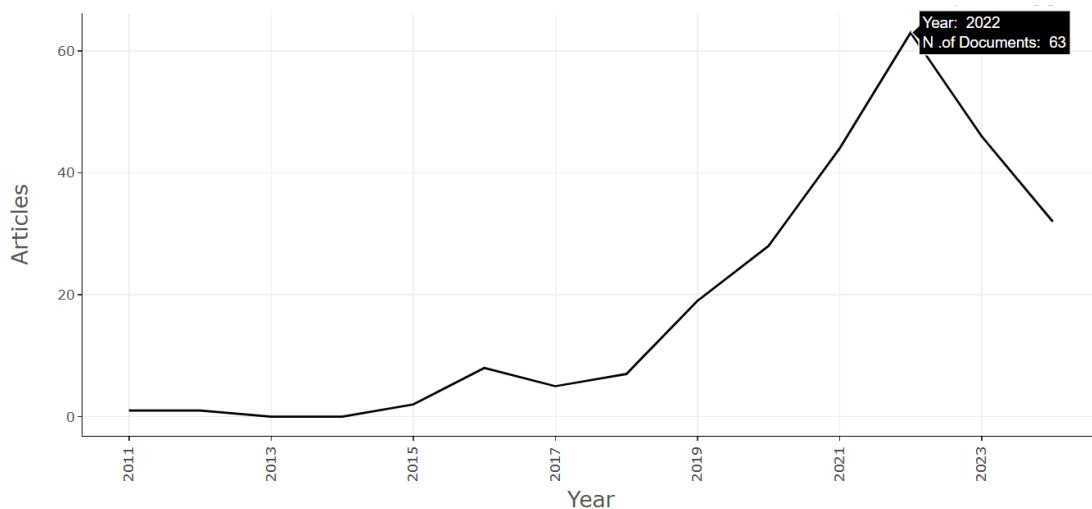
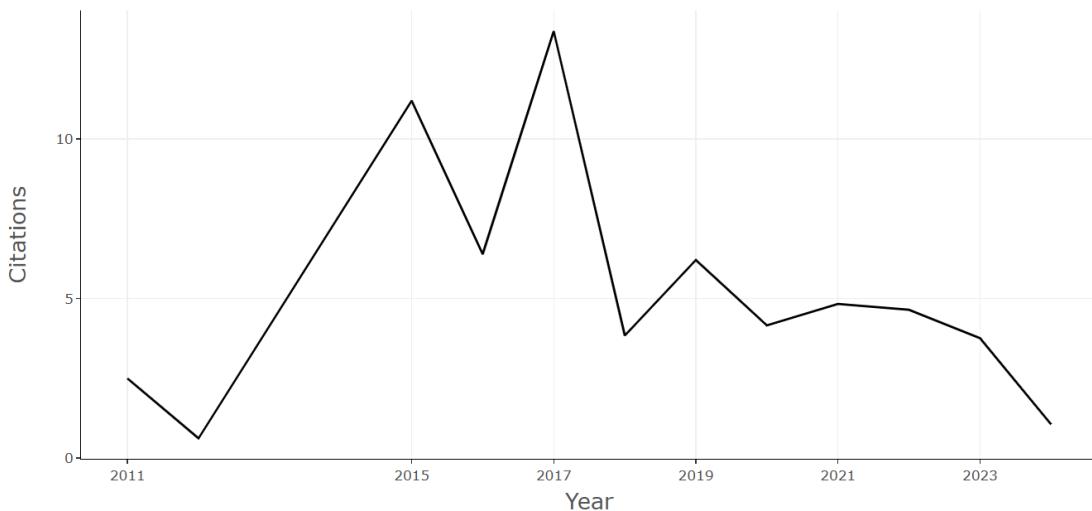
- I. Production Planning and Optimization: this cluster groups studies that apply MCDM to improve production efficiency, reduce waste, and balance competing objectives like cost, quality, and time. These methods help optimize decision-making in environments with dynamic production demands.
- II. Supply Chain Management and Logistics: MCDM supports real-time and strategic decision-making in complex supply networks. Integration with IoT and sensor data enables responsive and sustainable supply chain systems. Studies often aim to achieve agility, resilience, and environmental performance.
- III. Automation, Robotics, and Artificial Intelligence: this cluster reflects the integration of intelligent technologies into manufacturing environments. MCDM aids in selecting optimal technologies under conditions of uncertainty, particularly where trade-offs between cost, performance, and compatibility exist.
- IV. Energy Management and Sustainability: focuses on the application of MCDM to environmental objectives, including evaluating renewable energy options, reducing carbon emissions, and optimizing energy consumption. This cluster reflects the alignment of Industry 4.0 with sustainability goals.

Each cluster was validated both through network metrics (e.g., modularity, centrality, node degree) and through the qualitative review of representative studies within each theme. The clustering structure provides a conceptual map of the research landscape, helping to identify both well-established areas and potential gaps for future research.

**Table 1. Main informations of the dataset.**

| Description                     | Results   |
|---------------------------------|-----------|
| MAIN INFORMATION ABOUT DATA     |           |
| Timespan                        | 2011:2024 |
| Sources (Journals, Books, etc)  | 79        |
| Documents                       | 256       |
| Annual Growth Rate %            | 30,55     |
| Document Average Age            | 2,71      |
| Average citations per doc       | 18,94     |
| References                      | 13607     |
| DOCUMENT CONTENTS               |           |
| Keywords Plus (ID)              | 687       |
| Author's Keywords (DE)          | 1008      |
| AUTHORS                         |           |
| Authors                         | 932       |
| Authors of single-authored docs | 26        |
| AUTHORS COLLABORATION           |           |
| Single-authored docs            | 26        |
| Co-Authors per Doc              | 4,04      |
| International co-authorships %  | 38,67     |
| DOCUMENT TYPES                  |           |
| article                         | 241       |
| review                          | 15        |

## 3. RESULTS



### 3.1. Quantitative Results

The 256 articles analyzed were collected from 79 journals. Detailed information on the dataset is provided in Table 1. The reference period of the research goes from 2011 to 2024; over the years there have been several peaks of interest in the topic, Fig. (2) highlights how 2022 was the year in which the most articles were produced, 63 documents, on the topic of the research.

As for the average citation rate per year, Fig. (3) records an average citation rate of 11.2 in 2015; 2017 was the year with the highest rate of 13.4%; followed by 2019 which recorded 6.2%; and finally, in 2021 an average rate of 4.8% was highlighted.

From the analysis of the articles, it emerged that the journals that have dealt with the topic of Industry 4.0 using a multi-criteria approach are Sustainability and Mathematics (see Table 3), while Table 4 represents the authors' production over time taking into account the year, the frequency (freq), the total number of citations (TC) and the TC per year (TCpY).

Of the 256 articles mentioned above, 241 were empirical studies and 15 literature reviews. Additionally, the analysis involved 932 authors and only 26 single-authored documents. On average, each document was cited 18.94, and the total of references reported by all documents in the dataset equals 13607. The most cited article was written by Kubler, S., (2016), followed by Kahraman, C., (2017) and Mardani, A., (2015) (see Table 2).

**Fig. (2).** Annual Scientific Production.**Fig. (3).** Average citations per year.**Table 2. Most Global Cited Documents.**

| Paper                                        | DOI                             | TC  | TCpY  | Normalized TC |
|----------------------------------------------|---------------------------------|-----|-------|---------------|
| KUBLER S, 2016, EXPERT SYST APPL             | 10.1016/j.eswa.2016.08.064      | 297 | 33,00 | 5,17          |
| KAHRAMAN C, 2017, J ENVIRON ENG LANDSC MANAG | 10.3846/16486897.2017.1281139   | 201 | 25,13 | 1,88          |
| MARDANI A, 2015, SUSTAINABILITY              | 10.3390/su71013947              | 183 | 18,30 | 1,63          |
| PAMUCAR D, 2017, EXPERT SYST APPL            | 10.1016/j.eswa.2017.06.037      | 168 | 21,00 | 1,57          |
| ARABAMERI A, 2019, SCI TOTAL ENVIRON         | 10.1016/j.scitotenv.2018.12.115 | 151 | 25,17 | 4,05          |
| SITORUS F, 2019, EXPERT SYST APPL            | 10.1016/j.eswa.2018.12.001      | 123 | 20,50 | 3,30          |
| TSCHEIKNER-GRATL F, 2017, WATER              | 10.3390/w9020068                | 103 | 12,88 | 0,96          |
| NABEEH NA, 2019, IEEE ACCESS                 | 10.1109/ACCESS.2019.2899841     | 101 | 16,83 | 2,71          |
| MINA H, 2021, J CLEAN PROD                   | 10.1016/j.jclepro.2020.125273   | 92  | 23,00 | 4,76          |
| BASILIO MP, 2022, ELECTRONICS                | 10.3390/electronics1111720      | 85  | 28,33 | 6,09          |
| WANG H, 2019, J CLEAN PROD                   | 10.1016/j.jclepro.2018.10.131   | 82  | 13,67 | 2,20          |
| SOTOUEH-ANVARI A, 2022, APPL SOFT COMPUT     | 10.1016/j.asoc.2022.109238      | 79  | 26,33 | 5,66          |
| YOUSSEF AE, 2020, IEEE ACCESS                | 10.1109/ACCESS.2020.2987111     | 71  | 14,20 | 3,42          |
| WANG L, 2020, IEEE ACCESS                    | 10.1109/ACCESS.2020.3017221     | 62  | 12,40 | 2,98          |
| CHEN HMW, 2016, MATH PROBL ENG               | 10.1155/2016/8097386            | 56  | 6,22  | 0,97          |
| SANCHEZ-GARRIDO AJ, 2022, J CLEAN PROD       | 10.1016/j.jclepro.2021.129724   | 54  | 18,00 | 3,87          |
| TAYLAN O, 2020, SUSTAINABILITY               | 10.3390/su12072745              | 52  | 10,40 | 2,50          |
| ALI SA, 2021, ENVIRON SCI POLLUT RES         | 10.1007/s11356-020-11004-7      | 50  | 12,50 | 2,59          |
| AFRASIA BI A, 2022, ENVIRON SCI POLLUT RES   | 10.1007/s11356-021-17851-2      | 50  | 16,67 | 3,58          |
| TIRKOLAEI EB, 2021, MATHEMATICS              | 10.3390/math9111304             | 48  | 12,00 | 2,48          |

**Table 3. Most Relevant Sources.**

|                                      | Sources | Articles |
|--------------------------------------|---------|----------|
| SUSTAINABILITY                       |         | 49       |
| MATHEMATICS                          |         | 22       |
| IEEE ACCESS                          |         | 19       |
| APPLIED SCIENCES-BASEL               |         | 12       |
| CMC-COMPUTERS MATERIALS \& CONTINUA  |         | 12       |
| MATHEMATICAL PROBLEMS IN ENGINEERING |         | 9        |
| EXPERT SYSTEMS WITH APPLICATIONS     |         | 8        |
| AXIOMS                               |         | 7        |
| COMPLEX \& INTELLIGENT SYSTEMS       |         | 4        |
| ELECTRONICS                          |         | 4        |

**Table 4. Authors' Production over Time.**

| Author               | year | freq | TC  | TCpY   |
|----------------------|------|------|-----|--------|
| AGRAWAL ALKA         | 2024 | 1    | 0   | 0      |
| ALHARBI ABDULLAH     | 2024 | 1    | 0   | 0      |
| ALOSAIMI WAEL        | 2024 | 1    | 0   | 0      |
| ALYAMI HASHEM        | 2024 | 1    | 0   | 0      |
| EREN TAMER           | 2024 | 1    | 0   | 0      |
| KUMAR RAJEEV         | 2024 | 1    | 0   | 0      |
| AGRAWAL ALKA         | 2023 | 1    | 5   | 2,5    |
| DANG THANH-TUAN      | 2023 | 1    | 2   | 1      |
| KHAN RAEES AHMAD     | 2023 | 1    | 5   | 2,5    |
| WANG CHIA-NAN        | 2023 | 1    | 2   | 1      |
| ABUSHARK YOOSEF B    | 2022 | 2    | 9   | 3      |
| AGRAWAL ALKA         | 2022 | 3    | 16  | 5,333  |
| ALHARBI ABDULLAH     | 2022 | 1    | 14  | 4,667  |
| ALMALAWI ABDULMOHSEN | 2022 | 2    | 9   | 3      |
| ALOSAIMI WAEL        | 2022 | 1    | 14  | 4,667  |
| ALYAMI HASHEM        | 2022 | 1    | 14  | 4,667  |
| DANG THANH-TUAN      | 2022 | 1    | 15  | 5      |
| EREN TAMER           | 2022 | 1    | 10  | 3,333  |
| KHAN RAEES AHMAD     | 2022 | 5    | 42  | 14     |
| KUMAR RAJEEV         | 2022 | 3    | 28  | 9,333  |
| WANG CHIA-NAN        | 2022 | 3    | 28  | 9,333  |
| ABDEL-BASSET MOHAMED | 2021 | 2    | 18  | 4,5    |
| ABUSHARK YOOSEF B    | 2021 | 1    | 11  | 2,75   |
| AGRAWAL ALKA         | 2021 | 4    | 37  | 9,25   |
| ALHARBI ABDULLAH     | 2021 | 3    | 26  | 6,5    |
| ALMALAWI ABDULMOHSEN | 2021 | 1    | 11  | 2,75   |
| ALOSAIMI WAEL        | 2021 | 3    | 26  | 6,5    |
| ALYAMI HASHEM        | 2021 | 1    | 6   | 1,5    |
| DANG THANH-TUAN      | 2021 | 2    | 60  | 15     |
| KHAN RAEES AHMAD     | 2021 | 3    | 31  | 7,75   |
| KUMAR RAJEEV         | 2021 | 3    | 26  | 6,5    |
| WANG CHIA-NAN        | 2021 | 2    | 59  | 14,75  |
| ABDEL-BASSET MOHAMED | 2020 | 1    | 32  | 6,4    |
| EREN TAMER           | 2020 | 2    | 66  | 13,2   |
| ABDEL-BASSET MOHAMED | 2019 | 1    | 101 | 16,833 |

The most cited countries are China with 680 citations and 160 documents, followed by Turkey with 589 citations and

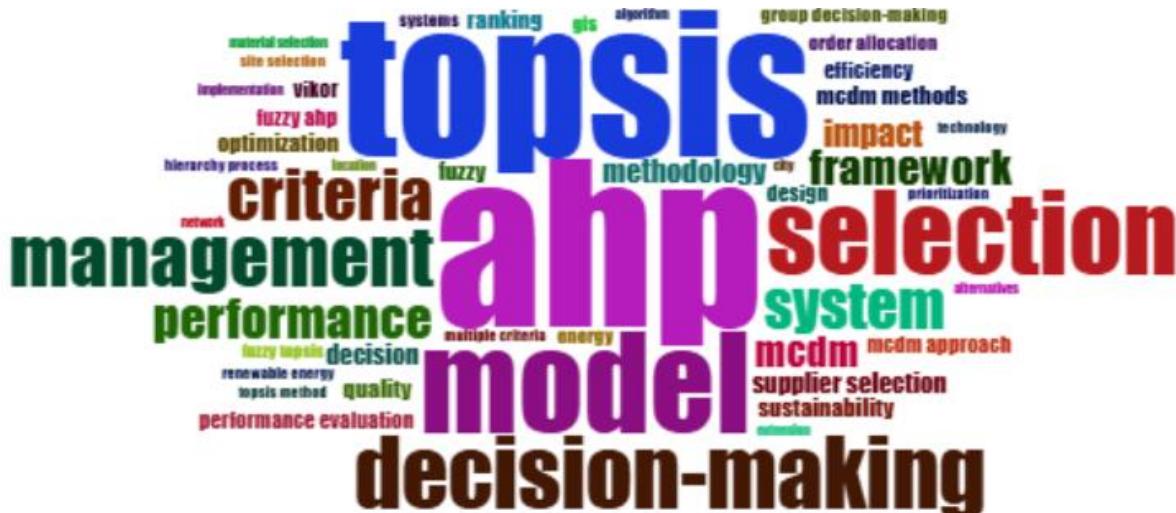
67 documents, and India with 311 citations and 131 documents (Table 5).

**Table 5. Top 20 most cited countries and number of documents.**

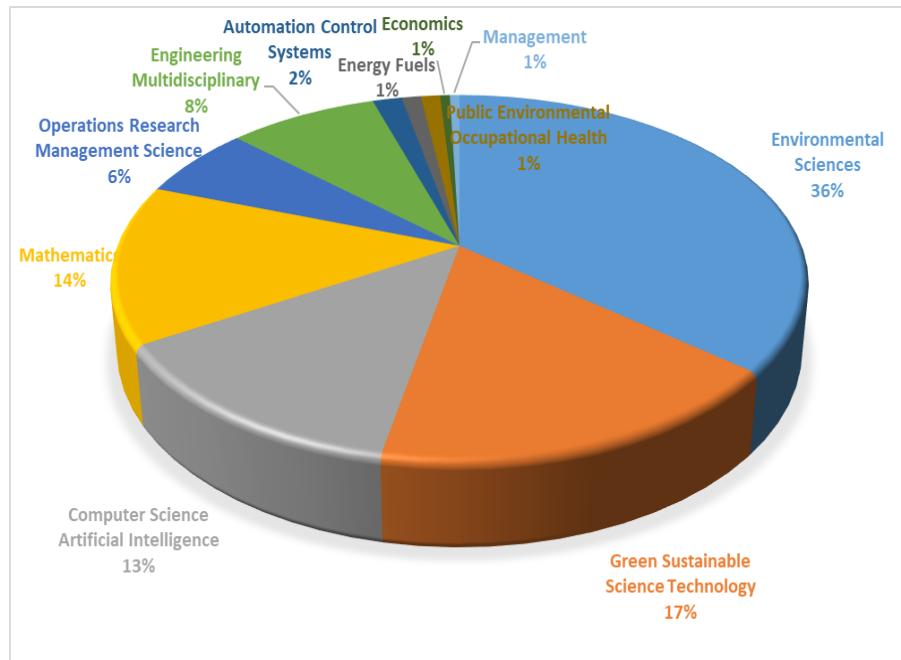
| Country        | TC  | Freq |
|----------------|-----|------|
| CHINA          | 680 | 160  |
| TURKEY         | 589 | 67   |
| INDIA          | 311 | 131  |
| MALAYSIA       | 301 | 27   |
| LUXEMBOURG     | 297 | 2    |
| IRAN           | 252 | 34   |
| SAUDI ARABIA   | 241 | 69   |
| SERBIA         | 228 | 23   |
| EGYPT          | 197 | 23   |
| VIETNAM        | 181 | 34   |
| UNITED KINGDOM | 178 | 18   |
| SPAIN          | 134 | 32   |
| DENMARK        | 113 | 6    |
| BRAZIL         | 107 | 12   |
| AUSTRIA        | 103 | 5    |
| GREECE         | 101 | 17   |
| ITALY          | 98  | 15   |
| PAKISTAN       | 95  | 28   |
| USA            | 87  | 24   |
| LITHUANIA      | 82  | 30   |

Keywords are necessary elements to analyze the contents and issues of documents. According to Callon *et al.*, the study of the co-occurrence of these keywords is defined as co-word analysis; it is performed to calculate the degree of co-occurrence of keywords and concepts of the research domain (Khanra *et al.*, 2020). In our study, we use Biblioshiny (see Fig. 4); we consider 50 plus keywords to build this word cloud, these are obtained from the titles of cited references and are assumed to reflect the theoretical essence of the articles. The keyword AHP shows the highest frequency of 98, followed by Topsis (85), model (59), selection (49), decision making (42), criteria (31) and so on.

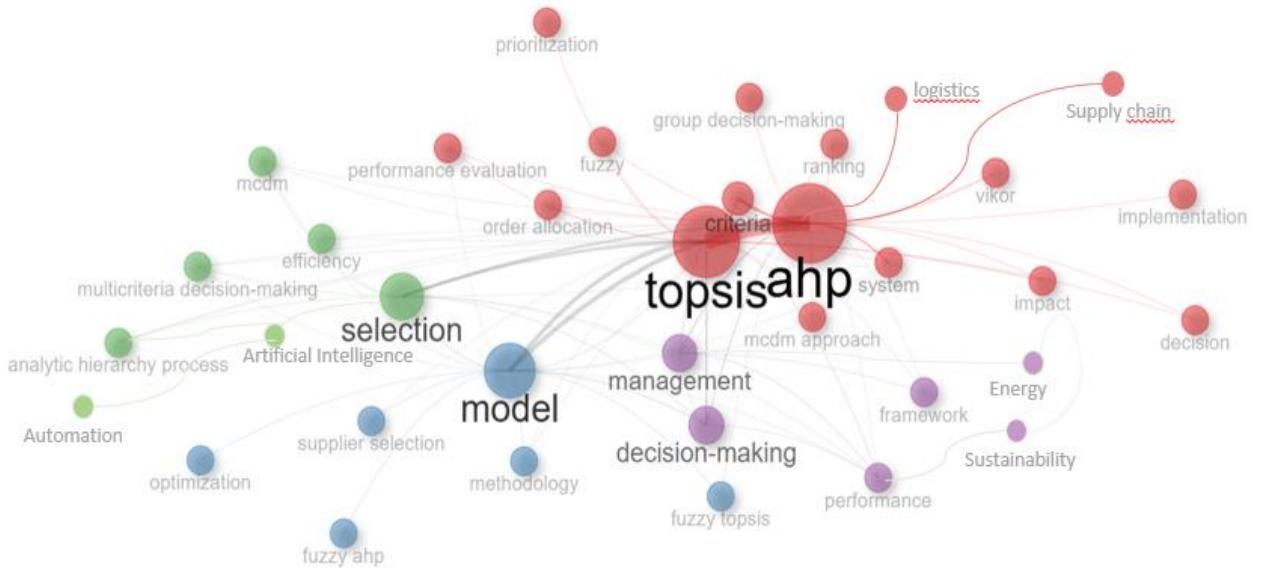
### 3.2. Qualitative Results and co-Citation Analysis


After the descriptive analysis, we focused on a more qualitative analysis that covered the most significant application areas of MCDM in the context of Industry 4.0. First, we

noticed that, in literature, different methodologies have been adopted in empirical studies. From our analysis, it emerged that the most used methodologies are AHP, Topsis, fuzzy AHP, Vikor and only recently, some authors have experimented with the adoption of more advanced big data analysis techniques and the use of predictive models able to effectively combine data with multi-criteria decision-making methods. Regarding the application fields, Fig. (5), shows the main application areas of MCDM methods in the context of Industry 4.0.


In particular, it is possible to observe in Fig. (5) that the areas with a greater number of studies are: *Environmental Sciences* (36%), e.g., Çalık, A. (2021) present a paper aims to develop a new group decision-making approach based on Industry 4.0 components for selecting the best green supplier by integrating AHP and TOPSIS methods under the Pythagorean fuzzy environment; *Green Sustainable Science Technology* (17%), e.g., Akila, D. et al. (2023) considered a Sustainable City using Multi-Criteria Decision Making (SC-MCDM) system is designed in this research to test and achieve sustainable developmental goals; *Mathematics* (14%), e.g., Abdullah, F. M. et al. (2023) their study aims to build a powerful hybrid MCDM method to classify the influence of I4.0 technologies on MSOs by adopting a combination of AHP and fuzzy TOPSIS; *Computer Science Artificial Intelligence* (13%), e.g., Alshahrani, R. et al. (2024) defined and applied a hybrid Multi-Criteria Decision Making (MCDM) integrated fuzzy model to identify the important barriers to the development of a long-term cloud Artificial Intelligence (AI) system in an Information Technology (IT) business; and so on.

From the qualitative analysis performed, we identified 4 main thematic clusters where MCDM methods are applied in Industry 4.0 (see Fig. 6). These clusters reflect the main application areas, emerging technologies and specific challenges that Industry 4.0 is facing.

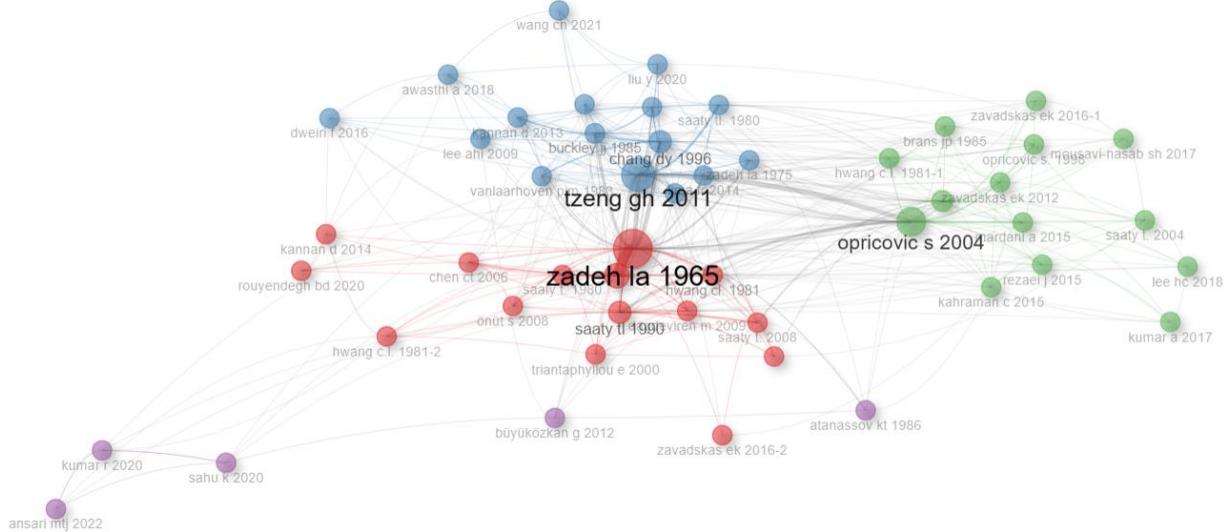

Custer 1 (blue): Production planning and optimization. This cluster is about the use of MCDM methods to optimize decisions related to production planning, resource management and improvement of production flows in an intelligent



**Fig. (4).** WordCloud.



**Fig. (5).** Main application areas of MCDM in Industry 4.0.




**Fig. (6).** Main thematic clusters.

environment. Process automation and production line management are key aspects in Industry 4.0 and MCDM methods are used to make optimal decisions when there are several factors to balance, such as cost, quality and production time. Among the most used MCDM methods we highlight AHP, TOPSIS, ANP, MOORA. Kumar, V. et al. (2021) in his work tries to identify the barriers of Industry 4.0 and prioritize strategies to overcome them for successful implementation of Industry 4.0, using a hybrid model of MCDM.

Cluster 2 (red): Supply Chain Management and Logistics. In Industry 4.0, advanced supply chain management is a crucial aspect. MCDM methods are applied to optimize logistics, supplier management, and material purchasing and

distribution decisions. The ability to monitor material flows in real time via sensors and IoT enables companies to make better decisions about routes, inventory, and suppliers. The MCDM methods used are VIKOR, AHP, PROMETHEE. Krstić, M., et al. (2022) with their research propose to select the most promising intelligent reverse logistics system development scenario that would serve as a guideline for decision making in the process of building sustainable circular economy systems and closed supply chains. To solve the defined problem, they used a new multi-criteria decision-making model, which combines Delphi, Analytical Network Process (ANP) and COmprehensive distance Based RANKing (COBRA) methods in the fuzzy environment.



**Fig. (7).** Co-citation conceptual map. Own elaboration through Bibliometrix.

Cluster 3 (green): Automation, Robotics and Artificial Intelligence. Advanced robotics and automation are continuously evolving in the context of Industry 4.0. MCDM methods are used to make strategic decisions on industrial robot selection, automated system integration and operation optimization. Wang, K., *et al.* (2023) in their study try to investigate the function of AI tools in the construction industry using a hybrid multi-criteria decision making (MCDM) framework based on Delphi method, analytic network process (ANP) and technique for preference ordering by similarity to ideal solution (TOPSIS) in a fuzzy scenario.

Cluster 4 (purple): Energy Management and Sustainability. Energy efficiency and sustainability are central issues in Industry 4.0. MCDM methods are used to balance decisions related to energy consumption, green technologies, resource management and sustainable policies. Favi, C. *et al.* (2022) present a work based on the combination of EMFA, LCA and MCDM tools in a research model that concerns plant metabolism.

### 3.3. Co-citation Analysis

Then, we performed a co-citation analysis in the considered period (2011-2024), to highlight whether there are relevant associations between the articles and authors; a total of 4 co-citation networks appeared.

We then performed a co-citation analysis in the considered period (2011-2024), to highlight whether there are relevant associations between articles and authors; a total of 4 co-citation networks appeared. Fig. (6) represents a co-citation network (Small, 1973), that is, it highlights the connections between the main articles and authors using MCDMs in the context of Industry 4.0, tracking the articles that have been cited together. This analysis allows us to obtain a complete view of research trends, emerging applications and developments in the field. We speak of co-citation of two documents when both are cited in a third document. Regarding co-citing authors, according to Aria and Cuccurullo [47], proximity measures how many steps are needed to access all the other vertices from a given vertex; page rank

approximates the probability that a message reaches a particular vertex. In Fig. (7) the lines represent a citation between authors, while the size of the nodes is related to the sum of the frequencies. The concept map allows us to identify 4 working groups or clusters by color. The central group of authors corresponds to experienced researchers, who have taken part in the development of the methodology and several publications in different fields. These authors, strongly correlated by multiple connections, reveal more working connections. In the first group there are 17 authors (red cluster). Zadeh is the most important author (with a betweenness centrality value of 388,498, page rank of 0.062 and closeness of 0.014). The second group is composed of 16 authors (blue cluster). Tzeng gh stands out in it (with a betweenness centrality value of 259,605, page rank of 0.049 and closeness of 0.013). The third group is composed of 14 authors (green cluster). The main author of this group is Opricovic (with a betweenness centrality value of 163,390, a page rank of 0.044, and a closeness value of 0.013). The last group (the purple one) is considerably less significant in size, being characterized by only 3 authors; among these, Kumar stands out, who presents the following characteristics: betweenness centrality value of 11,030, page rank of 0.016 and closeness of 0.008 (see Table 6).

**Table 6.** Co-citation Network.

| Node              | Cluster | Betweenness | Closeness | PageRank |
|-------------------|---------|-------------|-----------|----------|
| zadeh la 1965     | 1       | 388,498     | 0,014     | 0,062    |
| chen ct 2000      | 1       | 78,142      | 0,011     | 0,043    |
| saaty tl 1990     | 1       | 81,859      | 0,011     | 0,032    |
| hwang cl. 1981    | 1       | 22,772      | 0,01      | 0,027    |
| saaty t. 1980     | 1       | 2,627       | 0,01      | 0,022    |
| saaty t. 2008     | 1       | 0,855       | 0,01      | 0,022    |
| dagdeviren m 2009 | 1       | 15,042      | 0,01      | 0,024    |

|                       |   |         |       |       |
|-----------------------|---|---------|-------|-------|
| büyüközkan g 2012     | 1 | 2,276   | 0,009 | 0,009 |
| hwang c.l. 1981-2     | 1 | 1,357   | 0,007 | 0,013 |
| saaty rw 1987         | 1 | 0,988   | 0,009 | 0,013 |
| chen ct 2006          | 1 | 1,64    | 0,008 | 0,017 |
| önüt s 2008           | 1 | 1,561   | 0,01  | 0,016 |
| rouyendegh bd 2020    | 1 | 0,25    | 0,007 | 0,009 |
| triantaphyllou e 2000 | 1 | 0       | 0,008 | 0,016 |
| atanassov kt 1986     | 1 | 0,194   | 0,009 | 0,01  |
| kannan d 2014         | 1 | 2,8     | 0,007 | 0,009 |
| zavadskas ek 2016-2   | 1 | 0,218   | 0,008 | 0,006 |
| tzeng gh 2011         | 2 | 259,605 | 0,013 | 0,049 |
| chang dy 1996         | 2 | 44,596  | 0,011 | 0,036 |
| buckley jj 1985       | 2 | 20,986  | 0,011 | 0,035 |
| saaty tl. 1980        | 2 | 12,572  | 0,01  | 0,023 |
| lima fr 2014          | 2 | 37,247  | 0,011 | 0,022 |
| behzadian m 2012      | 2 | 13,255  | 0,011 | 0,022 |
| sun cc 2010           | 2 | 1,361   | 0,01  | 0,025 |
| lee ahi 2009          | 2 | 13,832  | 0,009 | 0,017 |
| zadeh la 1975         | 2 | 16,625  | 0,011 | 0,019 |
| liu y 2020            | 2 | 2,638   | 0,009 | 0,015 |
| shih hs 2007          | 2 | 35,628  | 0,01  | 0,016 |
| wang cn 2021          | 2 | 0       | 0,008 | 0,009 |
| awasthi a 2018        | 2 | 34,416  | 0,01  | 0,014 |
| dweiri f 2016         | 2 | 9,278   | 0,009 | 0,01  |
| kannan d 2013         | 2 | 3,5     | 0,009 | 0,022 |
| vanlaarhoven pjm 1983 | 2 | 5,686   | 0,01  | 0,017 |
| opricovic s 2004      | 3 | 163,39  | 0,013 | 0,044 |
| saaty tl 1977         | 3 | 47,198  | 0,012 | 0,027 |
| mardani a 2015        | 3 | 2,856   | 0,01  | 0,022 |
| hwang c.l. 1981-1     | 3 | 21,516  | 0,011 | 0,019 |
| rezaei j 2015         | 3 | 1,837   | 0,01  | 0,013 |
| zavadskas ek 2016-1   | 3 | 1,529   | 0,009 | 0,012 |
| mousavi-nasab sh 2017 | 3 | 0,377   | 0,009 | 0,012 |
| zavadskas ek 2012     | 3 | 36,274  | 0,009 | 0,021 |
| kumar a 2017          | 3 | 0,079   | 0,008 | 0,01  |
| brans jp 1985         | 3 | 2,038   | 0,01  | 0,014 |
| saaty t. 2004         | 3 | 0,105   | 0,008 | 0,017 |
| kahraman c 2015       | 3 | 15,511  | 0,01  | 0,017 |

|                   |   |       |       |       |
|-------------------|---|-------|-------|-------|
| lee hc 2018       | 3 | 0,27  | 0,009 | 0,009 |
| opricovic s. 1998 | 3 | 1,214 | 0,009 | 0,018 |
| kumar r 2020      | 4 | 11,03 | 0,008 | 0,016 |
| sahu k 2020       | 4 | 1,151 | 0,01  | 0,015 |
| ansari mtj 2022   | 4 | 1,322 | 0,007 | 0,014 |

#### 4. CONCLUSION

In our work, it emerged that the use of MCDMs offers several advantages in the context of the Industry 4.0 project, representing a key resource for the management and optimization of processes. In fact, the methods can be adapted to different decision-making contexts, allowing companies to keep up with changing market conditions; they are useful for balancing economic and environmental objectives, to promote sustainable production; furthermore, the combination of MCDMs with advanced technologies, such as Artificial Intelligence, allows us to obtain optimized solutions in real time, based on large volumes of data from sensors and IoT devices. Despite their strengths, the application of MCDMs faces challenges related to data uncertainty and the dynamic nature of industrial environments. Addressing these challenges calls for further refinement of hybrid models, particularly those incorporating predictive analytic and machine learning. Future research should prioritize the integration of MCDMs into digital infrastructures, explore real-time data fusion techniques, and develop frameworks adaptable to various industrial contexts. This will ensure that MCDM methods remain relevant and impactful in the evolving landscape of Industry 4.0.

#### CONFLICT OF INTEREST

The authors declare no conflict of interest.

#### DECLARATIONS OF INTEREST

None.

#### REFERENCES

Abdel-Basset, M., Mohamed, R., Elhoseny, M., Abouhawash, M., Nam, Y., & AbdelAziz, N. M. (2021). Efficient mcdm model for evaluating the performance of commercial banks: A case study. *Computers, Materials and Continua*, 67(3), 2729-2746.

Abdullah, F. M., Al-Ahmari, A. M., & Anwar, S. (2023). A hybrid fuzzy multi-criteria decision-making model for evaluating the influence of Industry 4.0 technologies on manufacturing strategies. *Machines*, 11(2), 310.

Abdulvahitoglu, A., & Kilic, M. (2022). A new approach for selecting the most suitable oilseed for biodiesel production; the integrated AHP-TOPSIS method. *Ain Shams Engineering Journal*, 13(3), 101604.

Abushark, Y. B., Khan, A. I., Alsolami, F. J., Almalawi, A., Alam, M. M., Agrawal, A., ... & Khan, R. A. (2021). Usability evaluation through fuzzy AHP-TOPSIS approach: Security requirement perspective. *Comput. Mater. Contin*, 68, 1203-1218.

Adhikari, D., Gazi, K. H., Giri, B. C., Azizzadeh, F., & Mondal, S. P. (2023). Empowerment of women in India as different perspectives based on the AHP-TOPSIS inspired multi-criterion decision making method. *Results in Control and Optimization*, 12, 100271.

Akila, D., Pal, S., Sarkar, B., Jeyalakshmi, S., Muthaiyah, S., & Muthu, K. S. (2023). A Solution for Sustainable City Using Multi-Criteria Decision-Making to achieve Sustainable Developmental Goals for Industry 4.0.

Alshahrani, R., Yenugula, M., Algethami, H., Alharbi, F., Goswami, S. S., Naveed, Q. N., ... & Zahmatkesh, S. (2024). Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry. *Expert systems with applications*, 238, 121732.

Alyami, H., Ansari, M. T. J., Alharbi, A., Alosaimi, W., Alshammari, M., Pandey, D., ... & Khan, R. A. (2022). Effectiveness evaluation of different IDSS using integrated fuzzy MCDM model. *Electronics*, 11(6), 859.

Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis, *Journal of Informetrics*, 11(4), pp 959-975, Elsevier.

Bahadori, M. S., Gonçalves, A. B., & Moura, F. (2022). A GIS-MCDM method for ranking potential station locations in the expansion of bike-sharing systems. *Axioms*, 11(6), 263.

Bekesiene, S., Vasiliauskas, A. V., Hošková-Mayerová, Š., & Vasilienė-Vasiliauskienė, V. (2021). Comprehensive assessment of distance learning modules by fuzzy AHP-TOPSIS method. *Mathematics*, 9(4), 409.

Bhattacharya, B., & Ghosh, M. (2018). "Sustainable supplier selection in Industry 4.0 using fuzzy TOPSIS."

Boonsoonthasit, G., Vongbunyong, S., Chonsawat, N., & Chanpuypetch, W. (2024). Development of a hybrid AHP-TOPSIS decision-making framework for technology selection in hospital medication dispensing processes. *IEEE Access*.

Çalik, A. (2021). A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era. *Soft Computing*, 25(3), 2253-2265.

Chang, C. T., Zhao, W. X., & Hajiyev, J. (2019). An integrated smartphone and tariff plan selection for taxi service operators: MCDM and RStudio approach. *IEEE Access*, 7, 31457-31472.

Erdebilli, B., Yilmaz, I., Aksoy, T., Hacioglu, U., Yüksel, S., & Dinçer, H. (2023). An interval-valued pythagorean fuzzy AHP and COPRAS hybrid methods for the supplier selection problem. *International Journal of Computational Intelligence Systems*, 16(1), 124.

Erdemir, N., Öztürk, F., & Kaya, G. K. (2022). Integrated decision support model for performance evaluation of public staff: using AHP and fuzzy TOPSIS. *Journal of the Faculty of Engineering and Architecture of Gazi University*, 37(4), 1809-1822.

Ferreira, A., & Alves, S. (2020). "A systematic review of multi-criteria decision-making approaches in Industry 4.0."

Goyal, S., Agarwal, S., Singh, N. S. S., Mathur, T., & Mathur, N. (2022). Analysis of hybrid MCDM methods for the performance assessment and ranking public transport sector: a case study. *Sustainability*, 14(22), 15110.

Guan, X., & Zhao, J. (2022). A Two-Step Fuzzy MCDM method for implementation of sustainable precision manufacturing: Evidence from China. *Sustainability*, 14(13), 8085.

Gupta, H., Kumar, A., & Wasan, P. (2021). Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. *Journal of Cleaner Production*, 295, 126253.

Hwang, C. L., & Yoon, K. (1981). "Multiple Attribute Decision Making: Methods and Applications."

Iskanderani, S., Bafail, O., & Alamoudi, M. (2023). Optimizing Sugar Manufacturing: A Hybrid Simulation-Based Approach and MCDM for Efficient Decision Making. *Axioms*, 12(10), 975.

Jagtap, M., & Karande, P. (2023). The m-polar fuzzy ELECTRE-I integrated AHP approach for selection of non-traditional machining processes. *Cogent Engineering*, 10(1), 2181737.

Jamwal, A., Agrawal, R., Sharma, M., Kumar, V., & Kumar, S. (2021). Developing A sustainability framework for Industry 4.0. *Procedia CIRP*, 98, 430-435.

Kahraman, C., Keshavarz Ghorabaei, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: an application to solid waste disposal site selection. *Journal of Environmental Engineering and Landscape Management*, 25(1), 1-12.

Kazancoglu, Y., & Ozkan-Ozen, Y. D. (2018). Analyzing Workforce 4.0 in the Fourth Industrial Revolution and proposing a road map from operations management perspective with fuzzy DEMATEL. *Journal of enterprise information management*, 31(6), 891-907.

Kim, C., & Won, J. S. (2020). A fuzzy analytic hierarchy process and cooperative game theory combined multiple mobile robot navigation algorithm. *Sensors*, 20(10), 2827.

Koseoglu, B., Buber, M., & Toz, A. C. (2018). Optimum site selection for oil spill response center in the Marmara Sea using the AHP-TOPSIS method. *Archives of Environmental Protection*, 44(4).

Krstić, M., Agnusdei, G. P., Miglietta, P. P., & Tadić, S. (2022). Evaluation of the smart reverse logistics development scenarios using a novel MCDM model. *Cleaner Environmental Systems*, 7, 100099.

Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of-the-art survey & testbed of fuzzy AHP (FAHP) applications. *Expert systems with applications*, 65, 398-422.

Kumar, V., Vrat, P., & Shankar, R. (2021). Prioritization of strategies to overcome the barriers in Industry 4.0: a hybrid MCDM approach. *Opsearch*, 1-40.

Lim, Y. R., Ariffin, A. S., Ali, M., & Chang, K. L. (2021). A hybrid MCDM model for live-streamer selection via the fuzzy delphi method, AHP, and TOPSIS. *Applied Sciences*, 11(19), 9322.

Malakar, S. (2022). Geospatial modelling of COVID-19 vulnerability using an integrated fuzzy MCDM approach: a case study of West Bengal, India. *Modeling Earth Systems and Environment*, 8(3), 3103-3116.

Mandal, S., Gazi, K. H., Salahshour, S., Mondal, S. P., Bhattacharya, P., & Saha, A. K. (2024). Application of interval valued intuitionistic fuzzy uncertain mcdm methodology for ph. d supervisor selection problem. *Results in control and optimization*, 15, 100411.

Melnik-Leroy, G. A., & Dzemyda, G. (2021). How to influence the results of MCDM?—evidence of the impact of cognitive biases. *Mathematics*, 9(2), 121.

Modanloo, V., Elyasi, M., Talebi-Ghadikolaei, H., Khatir, F. A., & Akhouni, B. (2024). The use of MCDM techniques to assess fluid pressure on the bending quality of AA6063 heat-treated tubes. *Journal of Engineering Research*, 12(1), 251-258.

Mollah, M. N. A., & Hossain, M. S. (2020). "A VIKOR-based decision-making framework for sustainable supply chain management in Industry 4.0."

Moslem, S., Saraji, M. K., Mardani, A., Alkharabshah, A., Duleba, S., & Esztergár-Kiss, D. (2023). A systematic review of analytic hierarchy process applications to solve transportation problems: from 2003 to 2022. *Ieee Access*, 11, 11973-11990.

Nguyen, T. L., Nguyen, P. H., Pham, H. A., Nguyen, T. G., Nguyen, D. T., Tran, T. H., ... & Phung, H. T. (2022). A novel integrating data envelopment analysis and spherical fuzzy MCDM approach for sustainable supplier selection in steel industry. *Mathematics*, 10(11), 1897.

Oliveira, A. S., Gomes, C. F., Clarkson, C. T., Sanseverino, A. M., Barcelos, M. R., Costa, I. P., & Santos, M. (2021). Multiple criteria decision making and prospective scenarios model for selection of companies to be incubated. *Algorithms*, 14(4), 111.

Oprićovic, S., & Tzeng, G. H. (2004). "VIKOR: A multi-criteria decision aid method."

Ortíz-Barrios, M., Petrillo, A., De Felice, F., Jaramillo-Rueda, N., Jiménez-Delgado, G., & Borrero-López, L. (2021). A dispatching-fuzzy AHP-TOPSIS model for scheduling flexible job-shop systems in industry 4.0 context. *Applied Sciences*, 11(11), 5107.

Özkan, B., Kaya, İ., Cebeci, U., & Başligil, H. (2015). A hybrid multicriteria decision making methodology based on type-2 fuzzy sets for selection among energy storage alternatives. *International Journal of Computational Intelligence Systems*, 8(5), 914-927.

Pan, J., Fan, R., Zhang, H., Gao, Y., Shu, Z., & Chen, Z. (2022). Investigating the effectiveness of Government Public Health Systems against COVID-19 by Hybrid MCDM approaches. *Mathematics*, 10(15), 2678.

Pocco, V., Mendoza, A., Chucuya, S., Franco-León, P., Huayna, G., Ingol-Blanco, E., & Pino-Vargas, E. (2024). Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS. *Water*, 16(18), 2643.

Rajak, A. K., Niraj, M., & Kumar, S. (2016). Designing of fuzzy expert heuristic models with cost management toward coordinating AHP, fuzzy TOPSIS and FIS approaches. *Sādhanā*, 41(10), 1209-1218.

Rasmussen, A., Sabic, H., Saha, S., & Nielsen, I. E. (2023). Supplier selection for aerospace & defense industry through MCDM methods. *Cleaner Engineering and Technology*, 12, 100590.

Ritmak, N., Rattanawong, W., & Vongmanee, V. (2022). The dynamic evaluation model of health sustainability under MCDM benchmarking health indicator standards. *International Journal of Environmental Research and Public Health*, 20(1), 259.

Rouyendegh, B. D., & Savalan, S. (2022). An integrated fuzzy MCDM hybrid methodology to analyze agricultural production. *Sustainability*, 14(8), 4835.

Rubio-Aliaga, A., García-Cascales, M. S., Sánchez-Lozano, J. M., & Molina-García, A. (2021). MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example. *Renewable Energy*, 163, 213-224.

Saaty, T.L. (1980). "The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation."

Sajjad, A., Ahmad, W., & Hussain, S. (2022). Decision-making process development for Industry 4.0 transformation. *Advances in Science and Technology Research Journal*, 16(3).

Samanlioglu, F., Ayağ, Z., Kirkil, G., & Yucal, E. (2022). Evaluation of Gas-Fired Combi Boilers with HF-AHP-MULTIMOORA. *Applied Computational Intelligence and Soft Computing*, 2022(1), 9225491.

Sánchez-Lozano, J. M., Salmerón-Vera, F. J., & Ros-Casajús, C. (2020). Prioritization of cartagena coastal military batteries to transform them into scientific, tourist and cultural places of interest: A gis-mcdm approach. *Sustainability*, 12(23), 9908.

Saputro, T. E., Figueira, G., & Almada-Lobo, B. (2023). Hybrid MCDM and simulation-optimization for strategic supplier selection. *Expert Systems with Applications*, 219, 119624.

Shahrubudin, N. (2021). Evaluation of critical success factors of 3D printing technology implementation using analytic hierarchy process (AHP) (Doctoral dissertation, Universiti Tun Hussein Onn Malaysia).

Sotoudeh-Anvari, A. (2022). The applications of MCDM methods in COVID-19 pandemic: A state of the art review. *Applied Soft Computing*, 126, 109238.

Torbacki, W. (2021). A hybrid MCDM model combining DANP and PROMETHEE II methods for the assessment of cybersecurity in industry 4.0. *Sustainability*, 13(16), 8833.

Tran, N. T., Trinh, V. L., & Chung, C. K. (2024). An Integrated Approach of Fuzzy AHP-TOPSIS for Multi-Criteria Decision-Making in Industrial Robot Selection. *Processes*, 12(8), 1723.

Trung, N. Q., & Thanh, N. V. (2022). Evaluation of digital marketing technologies with fuzzy linguistic MCDM methods. *Axioms*, 11(5), 230.

Tsai, J. F., Wang, C. P., Chang, K. L., & Hu, Y. C. (2021). Selecting bloggers for hotels via an innovative mixed MCDM model. *Mathematics*, 9(13), 1555.

Tüysüz, N., & Kahraman, C. (2023). A novel Z-fuzzy AHP&EDAS methodology and its application to wind turbine selection. *Informatica*, 34(4), 847-880.

Van Thanh, N. (2022). Sustainable energy source selection for industrial complex in Vietnam: A Fuzzy MCDM Approach. *IEEE Access*, 10, 50692-50701.

Vásquez, J., & Botero, S. (2020). Hybrid methodology to improve health status utility values derivation using EQ-5D-5L and advanced multi-criteria techniques. *International journal of environmental research and public health*, 17(4), 1423.

Wang, C. N., Nguyen, T. L., & Dang, T. T. (2022). Two-Stage Fuzzy MCDM for Green Supplier Selection in Steel Industry. *Intelligent Automation & Soft Computing*, 33(2).

Wang, H., Jiang, Z., Zhang, H., Wang, Y., Yang, Y., & Li, Y. (2019). An integrated MCDM approach considering demands-matching for reverse logistics. *Journal of cleaner production*, 208, 199-210.

Wang, K., Ying, Z., Goswami, S. S., Yin, Y., & Zhao, Y. (2023). Investigating the role of artificial intelligence technologies in the construction industry using a Delphi-ANP-TOPSIS hybrid MCDM concept under a fuzzy environment. *Sustainability*, 15(15), 11848.

Wang, L., Ali, Y., Nazir, S., & Niazi, M. (2020). ISA evaluation framework for security of internet of health things system using AHP-TOPSIS methods. *IEEE Access*, 8, 152316-152332.

Wang, X., Li, D., Zhang, X., & Cao, Y. (2018). MCDM-ECP: Multi criteria decision making method for emergency communication protocol in disaster area wireless network. *Applied Sciences*, 8(7), 1165.

Yegin, T., & Ikram, M. (2022). Performance evaluation of green furniture brands in the marketing 4.0 period: An integrated MCDM approach. *Sustainability*, 14(17), 10644.

Youssef, A. E. (2020). An integrated MCDM approach for cloud service selection based on TOPSIS and BWM. *IEEE Access*, 8, 71851-71865.

Youssef, A. E., & Saleem, K. (2023). A Hybrid MCDM Approach for Evaluating Web-Based E-Learning Platforms. *IEEE Access*.

Yu, X., Wu, X., & Huo, T. (2020). Combine MCDM methods and PSO to evaluate economic benefits of high-tech zones in China. *Sustainability*, 12(18), 7833.

Zavadskas, E. K., Vinogradova-Zinkevič, I., Juodagalviene, B., Lescauskienė, I., & Keizikas, A. (2023). Comparison of Safety and Sustainability of U-Shaped Internal Staircase Projects via a Combined MCDM Approach CORST. *Applied Sciences*, 14(1), 158.

Zhang, X., & Xie, X. (2015). "Application of fuzzy AHP and fuzzy TOPSIS in decision-making."

Zhang, Y., & Liu, Y. (2017). "A fuzzy AHP and TOPSIS model for selecting the optimal 4.0 manufacturing systems."

Received: July 18, 2025

Revised: July 22, 2025

Accepted: July 26, 2025

© 2025 Olivieri *et al.*

This is an open-access article licensed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the work is properly cited.