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Abstract: Modern portfolio theory is closely linked to the concept of diversification. As a result, the most important 

decision of investor is to make his allocation asset portfolio more and more efficient. Thus, for a given level of risk, 

the investor seeks to maximise the expected return and minimise the risk by constructing an optimal portfolio. In this 

paper, we seek to know how unsupervised learning can be used to define the asset allocation strategy. In this sense, 

we have carried out a comparative study between a so-called classical portfolio, which is based on the modern port-

folio theory (i.e. a portfolio constructed on the basis of numerical optimisation) and a portfolio based on unsuper-

vised learning. The aim of this comparison is to look for the best performing method that can give the best asset al-

location. Our findings show that the optimal strategy for an ambitious investor lies to the unsupervised learning algo-

rithms that allow a dynamic analysis of portfolio. However, the optimal strategy for a risk-averse investor is still the 

numerical optimisation approach. 
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1. INTRODUCTION 

Controlling the risks associated with market activities has 
become a major concern for both financial institutions and 
investors. Choosing a best portfolio is resulting from a trade-
off between the risk incurred by the investor and the ex-
pected return. For a given level of risk, the investor seeks to 
maximise the expected return by constructing an optimal 
portfolio assets, which are combined with a loan or borrow-
ing in order to obtain the level of risk the investor wishes to 
bear (Varian 1993). 

Thus, asset allocation is the most important decision that any 
investor faces to construct a portfolio, as there is no single 
solution that will be suitable for all investors. The decision 
making is mostly linked to risky aversion. Closely related in 
diversification portfolio modern theory (Sharpe 1964), the 
basis analysis is starting simply with linear mean-variance 
framework. This theory assumes that a manager composes  
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his portfolio with different types of assets (Markowitz 1959). 
The main objective of this diversification is to reduce the 
risk incurred by the investor while maintaining a satisfactory 
level of return, since there is a low probability that all the 
investments (the different assets that make up the portfolio) 
will decrease in return at the same time. Statistically, the 
concept of diversification is represented by the correlation 
matrix between assets. Basically, the lower of level of corre-
lation between assets, the better the diversification it is. 

In this article, we are looking for the best asset allocation 
that will allow us to build an optimal portfolio. This simply 
means that try to maximise return while to minimise risk 
through optimal diversification. To this end, we will show 
the contribution of Machine Learning algorithms in the port-
folio construction by comparing it with a standard variance-
covariance analysis. 

2. ASSET ALLOCATION 

2.1. Modern Portfolio Theory 

In 1952, Markowitz spearheaded the portfolio management 
model usually used by many financial institutions. Marko-
witz believes that economic agents are inherently risk averse, 
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and distinguishes them through a quadratic utility functions. 
In their choice, agents rely solely on two main elements in 
the random distribution of their wealth, namely expectation 
and variance (i.e. risk-return trade-off). Indeed, the expected 
utility of an individual’s wealth would be a function of mean 
and variance portfolio profitability. Consequently, Marko-
witz was able to formulate the portfolio problem by estab-
lishing the central theorem of Mean-Variance (Return-Risk) 
approach. This theorem consists to maximise the expected 
portfolio return for a given variance or minimising the vari-
ance (risk) for an expected target return. These two princi-
ples lead to formulate efficient frontier, which the investor 
can choose his preferred portfolio that perfectly matched 
with his risky preferences (Markowitz 1959). 

A. Efficient Frontier by Monte Carlo Simulations 

By defining combinations of securities according to their rate 
of return and risk level, the most optimal portfolios in the 
market are those that offer the highest expected return for 
different levels of risk assumed, or alternatively, those that 
offer the lowest risk for any targeted return. Thus, the graph-
ical representation takes the form of a curve in which any 
portfolio below the cut-off line is considered inefficient. The 
owner of such a portfolio will, therefore, be exposed to un-
necessary risk, or will receive a lower return than he could 
possibly obtain given the risk taken. 

To this end, the relationship between risk (which is usually 
represented in finance by volatility and measured by stand-
ard deviation) and return is graphically represented by a 
curve that clearly shows the limits of an efficient portfolio. 
This curve is also called the “Markowitz frontier” and serves 
as a reference for rational decision-making in investment 
solutions. 

 

Fig. (1). Markowitz efficient frontier. 

As shown in the graph above, all portfolios below the effi-
cient frontier are considered inefficient. It will be therefore 
recommended to retain a portfolio that lies to the frontier. 
Consequently, the allocations retained are those that result in 
the optimal portfolio and that maximise the Sharpe ratio 
and/or minimise the risk (which is reflected in the volatility 
of portfolio). Mathematically, this trivially translates into an 
optimisation problem under a constraint. Hence, the solution 
of the problem is as follows: 

 

 

 (1) 

Where:  

  : Portfolio return 

  : Assets return 

  : Weight of the asset in the portfolio 

  : Standard deviation of the portfolio 

B. Efficient Frontier by Optimisation 

The efficient frontier mentioned above is a rudimentary ap-
proach based on Monte Carlo simulation. It allows us to ob-
tain a set of portfolios that provide the expected return for a 
given level of risk. Based on this principle, we can use nu-
merical optimisation to minimise the volatility the portfolio. 
Mathematically, the problem is describe as follows: 

 

 

 (2) 

Where:  

  : Vector of asset weights 

  : Variance-covariance matrix 

  : Expected return of portfolio 

This risk minimisation problem can be inverted to transform 
the expectation-variance optimisation problem back into a 
risk-adjusted return maximisation: 

 

 

 (3) 

Where  is the risk aversion parameter  

2.2. Factorial Analysis 

A. Principal Component Analysis 

When a large number of quantitative variables are studied 
simultaneously (this is the case of a portfolio composed of 
several assets), the difficulty is linked to detect the multico-
linearity. And, by extension, the best choice of the weights of 
the assets that will constitute our portfolio in order to satisfy 
the principle of diversification. Hence, we consider the im-
portance of Principal Component Analysis (PCA) to solve 
the optimisation problem. The main objective of this analysis 
is to reduce the information held by highly correlated varia-
bles by creating dummy variables while distorting reality as 
little as possible (Billette 2013). 

So, in order to synthesise the quantitative data table, the 
principal component analysis (PCA) can be given by a re-
duced number of dummy variables F1, F2,…, Fm, by a kind 
of linear combination of centred and reduced variables 
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Z1,Z2,…,zp. In the other words, PCA proceeds by linear 
transformations of a large number of inter-correlated varia-
bles in order to obtain a relatively limited number of uncor-
related components4 (Yang 2015).  

This approach has a crucial interest, as it facilitates analysis 
by grouping large data into smaller sets to eliminate prob-
lems of multicolinearity between variables. This procedure 
can only be done by variance-covariance matrix or correla-
tions helping (which depending on the type of PCA). 

In this sense, PCA aims to represent, in graphically form, the 
essential information in a table of quantitative data consist-
ing of p variables and n observations. 

B. Independent Component Analysis 

Independent Component Analysis (ICA) is a recently devel-
oped factor analysis method that extends Principal Compo-
nent Analysis (PCA). This method allows a linear transfor-
mation of a set of variables assumed be non-Gaussian5 in 
order to determine “independent” components. Independent 
Component Analysis (ICA) is similar to Principal Compo-
nent Analysis (Cherfi et al. 2007). While PCA only takes 
into account a zero correlation between the principal compo-
nent, which is not sufficient to affirm the independence of 
the axes, ICA fills this gap by making it possible to obtain 
not only uncorrelated but also independent components 
(Fokou 2006). 

Based on this observation, we will use the ICA instead of the 
PCA to calculate the factorial axes, while ensuring their in-
dependence. This will allow us to obtain the financial asset 
allocations of a portfolio in the form of a linear combination 
of an independent factorial axis. This assumption can then, 
satisfy the principle of diversification (Lei 2019). 

3. METHODOLOGY 

The objective of this paper is to determine how unsupervised 
learning6 can be used to define the asset allocation strategy 
in portfolio construction. This process involves information 
mining, structure identification and determination of data 
correlations and does not require the existence of a variable 
to be explained, as in the case of supervised learning. 

Unsupervised learning will be used in our study through two 
levels:  

 Differentiation of risk factors by applying AIT to 
asset returns: this is an approach that uses factor 
analysis to extract information from the data and es-
timates the influence of the data on returns;  

 Building a portfolio based on the main components 
of the ICA. 

The interest of such reflection is to compare the performance 
of a portfolio created through an artificial intelligence algo-
rithm against a portfolio based on modern portfolio theory 
(Snow 2020). Thus, the methodology used will consist, first, 

                                                      

4 This is a very useful technique in Machine Learning to improve the quality 

of models. 
5 Non-normality is a characteristic of financial series. 
6 Unsupervised learning is a field of Machine Learning. 

in determining the best assets likely to make up our portfo-
lio. This step consists in reducing the number of assets by 
making it more limited. Therefore, the choice will be made 
on the basis of stocks that simultaneously have a high poten-
tial return (measured by EPS7) and low volatility (measured 
by the standard deviation). In the next step, we will try to 
identify the data generating process and links between series.  

To this end, we will use factor analysis, more precisely the 
PCA. The objective is to reduce the dimensions in the identi-
fication of data structures. Then, in order to successfully 
construct our portfolio, we will extract the weights of the 
different assets, due to an independent factor analysis (ICA). 
Finally, we will compare the performance of this portfolio 
generated by the ICA with that of a second portfolio generat-
ed by modern portfolio theory, (i.e. by Markowitz efficient 
frontier). 

The assumptions made in this work are based on four main 
points: 

 The source variables are statistically independent, 

 Linear transformations are sufficient to capture the 
information, 

 The factor components do not follow a normal dis-
tribution, 

 The correlation matrix R is invertible. 

These assumptions, usually tested in finance, are necessary 
for the application of an effective independent factor analysis 
(ICA). 

3.1. The Data 

Following the approach proposed in the methodology above, 
we will carry out a comparative study between a so-called 
standard portfolio construction, which is based on modern 
portfolio theory, and a portfolio based on unsupervised learn-
ing. The aim of this comparison is to know the most efficient 
method that can give us the best composition of portfolio. 

For this purpose, we tried to identify the number of stocks 
based on two criteria: high return (measured by EPS) and 
low stock volatility. These criteria allowed us to select 7 
stocks, namely: 

 NEJ: the company “Auto Nejma” which imports 
and markets vehicles; 

 ALM: the company “Aluminium du Maroc S.A.” 
specialising in the manufacture of aluminium; 

 PRO: the company “Promopharm” specialised in 
the production and selling of pharmaceutical prod-
ucts; 

 SOT: the “Sothema” company whose activity is the 
manufacture of medicines; 

 CTM: the “CTM” company which specialising in 
road transport; 

 ATW: Attijariwafa Bank is the biggest banking 
group in Morocco; 

                                                      

7 Earnings Per Share 



Asset allocation by Unsupervised Learning  Review of Economics and Finance, 2021, Vol. 19, No. 1    341 

 IAM: “Maroc telecom” is a company specialising in 
telecommunications. 

For the realization of this study, the historical data of stock 

prices, for the period going from January 2015 to June 2021, 

were collected from the Casablanca Stock Exchange. This 

period covering more than 6 years of daily data allowed us to 

collect a total of 3411 observations. The daily returns8 are 

noted successively [ ], [ ], [ ], [ ], [ ], 

[ ] and [ ]. 

3.2. The Performance Portfolio Evaluation 

When we talk about portfolio performance evaluation, we 
are simply referring to the endorsement of a procedure that 
may lead to adjust different portfolios. Indeed, in order to 
choose the funds (portfolios) in which to invest, the manager 
must be able to compare them on the basis of one or more 
criteria. Hence the need for the principle of portfolio perfor-
mance evaluation, which relies essentially on the calculation 
of ratios to judge the quality of performance achieved by a 
portfolio. In practice, there are several performance meas-
urement ratios and methods, including the following: 

 Sharpe ratio: The Sharpe ratio is probably one of 
the most famous indicators. The purpose of this ra-
tio is very simple. It measures the profitability of an 
investment compared to a risk-free investment. The 
portfolio is given to outperform a risk-free invest-
ment if the Sharpe ratio is greater than unity. How-
ever, this ratio has several drawbacks, especially in 
the case of non-Gaussian returns (as is the case of 
financial series). 

 Sortino Ratio: The Sortino ratio follows the same 
framework as the Sharpe ratio, except that it pro-
vides a solution to the problem of asymmetric dis-
tribution of asset returns. This ratio is mainly based 
on the standard deviation of excess negative returns 
instead of the total standard deviation. The particu-
larity of this indicator is that it allows the selection 
of financial assets for investors who are more inter-
ested in downside risk. To this end, a high Sortino 
indicator will highlight assets that have performed 
well but are resilient during periods of market de-
cline. Indeed, a ratio greater than 1 indicates that the 
performance of the portfolio is greater than the in-
curred risk and demonstrates the efficiency of in-
vestor’s management. 

 Omega ratio: This ratio does not require any as-
sumptions about the distribution of asset returns. 
Like Sortino’s ratio, it is based on the minimum 
break-even point instead of the risk-free rate. Un-
like Sharpe, the Omega ratio offers the possibility 
of ranking portfolios, since the values calculated are 
always positive. If the ratio is greater than 1, then 

                                                      

8 Log-return compounded equal to log(1+Rt) and where 

1
/)

1
(




t
p

t
p

t
p

t
R  is the simple return. 

the portfolio will have a positive performance. 
Conversely, it will have a negative performance. 

 Max drawdown: This indicator reflects the maxi-
mum loss of an asset or strategy during the period 
under study by comparing it with its maximum 
profitability. In other words, it measures the loss in-
curred by an investor in the case where he bought 
his portfolio at its highest price and sold it at its 
lowest price. 

 Calmar Ratio: This ratio aims to compare the an-
nualised return with the max drawdown since the 
fund creation. It is an index that tries to fill the gap 
left by other methods. These methods allow for a 
comparison of a fund that has survived several cri-
ses with a newly created fund in a bull market. 
Therefore, the comparison may be biased by the 
length of the history and market conditions, which 
is not obvious. However, although this ratio focuses 
on drawdown as an indicator of risk, it is less useful 
statistically. This is due to the neglect of the overall 
portfolio volatility. 

 Value-at-Risk: the VaR is used to determine the 
maximum potential loss that an investor can incur 
on his portfolio, over a given holding period, under 
normal market conditions and for a well-defined 
confidence level. 

4. EXPERIMENTAL RESULTS 

The most important decision an investor has to make the 
asset allocation of his portfolio. Indeed, this decision de-
pends on the choice of assets to be included in the investor’s 
portfolio under risk aversion, given the pursued strategy and 
investment horizon, etc. The variation of all these factors 
leads to the absence of a single solution adapted to all inves-
tors. 

In the present work, we will construct 7 portfolios according 
to 4 different approaches (basic allocation, simulation, opti-
misation and factor analysis). Then, we will evaluate the 
performance of these portfolios in order to know the optimal 
approach in terms of profitability and risk. 

4.1. Building Portfolios 

A. Naïve Approach 

In this approach, we will create an equally weighted portfo-
lio, i.e. each stock will be assigned an equal weight to all 
stocks. This is a simple and naive approach, but it can lead to 
a non-negligible performance as shown by DeMiguel in 
2007 (see also, DeMiguel, Garlappi, and Uppal 2009). In-
deed, our portfolio noted [PFeq] will correspond to the fol-
lowing linear combination: 

IAMATWCTMSOT

PROALMNEJeq

rrrr

rrrPF

1429.01429.01429.01429.0

1429.01429.01429.0




 (4) 

B. Markowitz Approach 

In a case similar to our study, modern portfolio theory is 
often used, based on the notion of the efficient frontier. The 
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latter is constructed by a Monte Carlo simulation which 
based on a set of optimal portfolios. 

At this stage, we use the programming language “Python” to 
perform the Monte Carlo simulation in order to construct 
160,000 portfolios with random weights. The visualization 
of this simulation is shown in Fig. (2) as follows: 

 

Fig. (2). Efficient frontier by simulation  

 

Fig. (3). Markowitz Asset Allocation. 

The shape of the frontier is a little irregular because of the 
simulated values, which are not so frequent in certain ex-
treme zones. The selected portfolio noted [PFEF] is the one 
that maximises the return and minimises the risk. In this 
case, we speak about a tangency portfolio. The composition 
of this portfolio is given in Fig. (3). In fact, our portfolio is 
written as follows: 

IAMATWCTMSOT

PROALMNEJEF

rrrr

rrrPF

088.0073.0042.048.0

0079.069.0052.0




 (5) 

Optimisation Approach 

In this approach, we will use numerical optimisation to find 
the portfolio that optimises the objective function as shown 
above. We will use the same assets in the construction of our 
portfolio noted [PFopt]. Then, we proceed with an examina-
tion of this portfolio to get the optimal composition and 
maintain the most efficient one. The efficient frontier ob-
tained by a numerical optimisation is presented in Fig. (4): 

 

Fig. (2). Efficient frontier by optimization. 

 

Fig. (5). Asset allocation by optimization. 

The identification of the minimum volatility portfolio al-
lowed us to know the asset allocation as presented in Fig. 
(5). As a result, our portfolio is written as follow: 

IAMATWCTM

SOTPROALMNEJopt

rrr

rrrrPF

229.011.0067.0

183.0079.0076.0255.0




 (6) 

The asset allocation in this portfolio is different from that 
given by the Monte Carlo simulation. In this case, the alloca-
tion is mainly distributed between 4 stocks (NEJ, SOT, IAM 
and ATW), in the opposite of simulation which allocated 
69% of the funds to a single stock (ALM). 

So far, we have proceeded to optimise the portfolio by min-
imising its volatility. However, it is also possible to invert 
the problem towards a maximisation of the risk-adjusted 
return. In this case, a convex optimisation can be used to find 
the efficient frontier. 

The asset allocation can be obtained by maximising the re-
turn depends on the level of risk tolerated by the portfolio 
manager. Based on this, we will have an optimal portfolio 
for each risk level. Thus, in Fig. (6), we observe the asset 
allocation as a function of risk aversion: 

We deduce that the more risk averse of investor, the more 
diversified the portfolio. Starting with the stock “SOT” 
(pharmaceutical company), an investor with low risk aver-
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sion could invest all the funds in this stock since it is current-
ly experiencing a strong, unprecedented trend due to 
Covid19. However, this trend could be reversed abruptly 
with significant losses. 

Indeed, a very risk-averse investor will naturally choose to 
diversify his portfolio perfectly in order to minimise losses 
in the event of an unexpected fall by the manager. The allo-
cation to each asset will then be increasingly important ac-
cording to the risk aversion. 

D. Factorial Analysis 

In this section, we will use factor analysis to calculate the 
factorial axes, while ensuring their independence. Based on 
this, we retain the four most important components. This will 
allow us to obtain the weights of the assets in a portfolio as a 
linear combination. The four independent components are 
presented in the table below (table 1): 

The factorial analysis also allows for a dynamic analysis of 
the portfolio in that it tells the investor which position to take 
(James and al. 2019). Furthermore, we distinguish 2 posi-
tions:  

 The long position which corresponds to a buyer’s 
position. This position is characterised by a positive 
coefficient in table 1, 

 The short position which corresponds to a seller’s 
position. It is characterised by a negative coefficient 
in table 1, 

Subsequently, we will determine the weight of each action 
by dividing the positive (resp. negative) coefficients by the 
sum of the positive (resp. negative) coefficients in order to 
normalise the coefficients. This will result in a set of weights 
in which the sum is equal to 1 (resp. -1). The normalised 
weights are shown in Fig. (7): 

The investor will then be able to buy or sell a stock depend-

ing on the evolution of the financial market and/or the arrival 

of new information. Consequently, we obtain 4 portfolios, 

noted respectively [PF1], [PF2], [PF3] and [PF4], from 4 

standardised components. 

4.2. Benchmarking of Allocation Strategies 

After having constructed several portfolios according to dif-
ferent strategies, we will discuss their performance against 
several criteria. All the criteria used in this evaluation are 
calculated using Python 3.8. The results of our analysis are 
presented in the table 2: 

The comparison of different strategies shows that factor 
analysis is considered to be the best performing in terms of 
annual or cumulative profitability. In this sense, we note that 

 

Fig. (6). Risk-based asset allocation. 

Table 1. Selected Components. 

 NEJ ALM PRO SOT CTM ATW IAM 

Portfolio 1 0.005 -0.404 0.868 -0.032 -0.279 -0.064 -0.032 

Portfolio 2 0.013 0.833 0.218 -0.084 -0.476 -0.118 -0.105 

Portfolio 3 -0.179 0.320 0.394 -0.158 0.814 -0.115 -0.098 

Portfolio 4 -0.058 -0.007 -0.011 0.794 0.038 -0.498 -0.341 

Source: Author’s calculation. 
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[PF4] achieves an annual return of about 25% (we exclude 
[PF1] because of its aberrant volatility). This portfolio also 
presents the best values for the Calmar and Omega ratios 
with values of 0.81 and 1.37 respectively. However, risk has 
a concomitant relationship with return: the higher the return, 
the higher the risk. 

Indeed, the portfolio [PF4] has a maximum drawdown of 
30% and a daily value-at-risk of about 3.5%. These two val-
ues are not negligible, but can be tolerated for a cumulative 
return of 289%. We conclude that factor analysis can repre-
sent an optimal strategy for ambitious investors. Of course, 
we neglect the other portfolios from the factor analysis 
([PF1], [PF2] and [PF3]) because of their poor performance. 

On the other hand, the optimal strategy for a risk-averse in-
vestor is the numerical optimization approach of the objec-
tive function. Indeed, the portfolio [PFopt] has a daily value-

at-risk of only 1% and a maximum drawdown of about 
13.5%. We can, therefore, deduce that this portfolio is low 
risk. Moreover, the annual return generated by this portfolio 
reaches 9% with a cumulative return of 71.5%. Admittedly, 
the values of these indicators are lower than those calculated 
on the basis of the factorial approach. However, we cannot 
deny that the numerical optimisation approach ensures less 
risk. This approach has therefore created a low-risk portfolio 
with a significant potential profitability. 

In addition, we also have the naive allocation strategy [PFeq], 

which assigns equal weight to all assets. This approach 

shows results close to those of numerical optimisation. How-

ever, despite the simplicity of this approach, it still performs 

quite well. 

 The analysis of the different strategies leads us to 
retain 3 main approaches: 

 

Fig. (3). Asset allocation using factor analysis. 

Table 2. Evaluation of the Performance of Portfolios. 

 PFeq PFEF PFopt PF1 PF2 PF3 PF4 

Annual return 9.5 % 6.9 % 9.0 % 27.7 % -10.8% 17.7 % 24.8 % 

Cumulative returns 76.9 % 51.7 % 71.5 % 348.0 % -50.4 % 171.3 % 289.0 % 

Annual volatility 9.3 % 20.4 % 8.3 % 4446 % 53.7 % 1659 % 28.2 % 

Sharpe ratio 1.03 0.43 1.08 -0.22 0.06 -0.09 0.92 

Calmar ratio 0.48 0.18 0.66 0.03 -0.15 0.16 0.82 

Omega ratio 1.21 1.13 1.23 0.69 1.01 0.91 1.37 

Sortino ratio 1.52 0.62 1.58 -0.25 0.08 -0.09 1.44 

Max drawdown -19.7 % -38.4 % -13.5 % -1074 % -72.4 % -110.5% -30.1 % 

Daily value at risk -1.1 % -2.5 % -1.0 % -564.1% -6.8 % -209.6% -3.5 % 

Source: Author’s calculation. 
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 Factorial analysis [PF4] for the ambitious investor, 

 Numerical optimisation [PFopt] for a risk-averse in-
vestor, 

 The naive approach [PFeq] for a risk-averse and 

simplistic investor. 

Finally, we will analyse the annual profitability of the 3 se-
lected portfolios [PFeq], [PFopt] and [PF4]: 

We find that there is similar annual profitability between the 
naive approach and the optimisation approach, and that both 
generate more profitability in an environment characterised 
by a high level of stability (2016, 2017 and 2018). However, 
both approaches are not robust enough to adapt to periods of 
crisis such as the Covid-19 crisis in March 2020. Converse-
ly, the factorial approach, which focuses more on current 
data than on past data, is highly adaptable to the crisis thanks 
to its dynamic analysis of the current environment. The con-
clusion drawn from this analysis is thus confirmed by a 
monthly analysis of profitability (Annex A). 

5. CONCLUSION 

This paper compares several approaches to constructing an 
optimal portfolio. The results show that the construction of 
the efficient frontier by simulation does not lead to a satis-
factory result in terms of the risk-return trade-off. Optimisa-
tion seems to be more efficient in terms of asset allocation, 
as the portfolio created by numerical optimisation is low 
risk. Furthermore, we have shown that a naive strategy can 
also lead to a result close to that of the optimisation. Since 
this strategy does not require prior knowledge by investors. 
It can, in some cases, outperform the other approaches. 

We also used the factorial approach, which is based on the 
principle components analysis (PCA), in order to identify the 
data structure and the relationships between variables. In this 
approach, we used PCA to extract the principal components 
and overcome the problems of collinearity and redundancy 
of information. The components are then processed by AIT 
to obtain independent components that can be used, after 
normalisation, as proportions in the construction of the 4 
portfolios. The results of this approach show that one of the 
four portfolios created outperforms the other approaches 
(naive, simulation and optimisation) in terms of profitability 
while generating a bearable risk. However, the results ob-

tained in this work are based only on historical data of stock 
prices, but stock prices can be impacted, in the time, by sev-
eral phenomena (like political, economic, and financial 
events) that can intervene. 
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Fig. (4). Annual return on the 3 respective portfolios PFeq, PFopt and PF4. 
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Fig. (5). Monthly return on the 3 respective portfolios PFeq, PFopt 

et PF4. 
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