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Abstract: The allocation of limited funds to competing activities is a well-known problem in economics and fi-

nance. Current modelling approaches for this problem are application specific and mathematically complex. This 

paper introduces a straightforward modelling approach based on a coloured-edge chain graph. The approach elicits a 

set of Pareto efficient allocations whose cardinality is theoretically studied. Additionally, the applicability of the 

model is illustrated through a case-study based on the chilean pension system. We conclude that despite intractabil-

ity, the approach can tackle problem in practice since worst-case instances are unlikely to occur.  
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1. INTRODUCTION 

Fund allocation is an important part of all business and not–
for–profit organisations. Funding plans are typically estab-
lished on a time basis (annual, monthly, etc.) and involve 
allocating anticipated income and resources among different 
activities or business interests. The amount of funding allo-
cated to each area imposes restrictions on the scope of an 
activity’s development. For example, if there is a budget 
reduction, some staff may have to be made redundant. Fur-
thermore, it is worthwhile to calculate allocations that satisfy 
the Pareto efficient principle since economic efficiency is a 
desired property for social justice, Barr (1993). A related 
concept is the equimarginal principle. In economics, this 
principle posits that utility is maximised when the marginal 
utility of every option to its marginal price is equal to that for 
every other option. Therefore, an economic agent will allo-
cate resources in such a way that this principle is satisfied, 
Gossen (1983). 

Pareto efficiency criteria have been used for solving several 
optimization problems in different economic sectors and 
locations. Naldi et al. (2019) propose an integer linear pro-
gramming model for budget allocation incorporating fairness 
and profit in the analyses. The main idea is to produce a fair 
treatment of organizational departments. Fwa and Farhan 
(2012) formulate and test a model to allocate budget for the 
maintenance of highways. They use Pareto efficiency ap-
proach to determine equitable optimal allocations. In the 
same way, Mahdi et al. (2019) propose a decision support  
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system for optimal maintenance of bridges based on a family 
of Pareto efficient solutions. The study of Baladeh et al. 
(2019) determines optimal safety measures for oil and gas 
facilities considering budget and risk involved. Üstün and 
Anagün (2015) proposed a set of financial allocation strate-
gies and multi-objective models related to building rein-
forcement, with the purpose of mitigating the earthquake risk 
of disaster in the city of Istanbul. Yadollahi et al. (2015) de-
veloped an approach to prioritize optimal Pareto solutions 
using a genetic algorithm to identify a unique package for 
bridge rehabilitation. Citanna and Siconolfi (2016) establish 
a theoretical model to find efficient allocations in large ad-
verse selection economies introducing menus of contracts. 
Liu and Cramer (2018) compares several computational al-
gorithms in terms of proximity to and coverage of the Pare-
to-optimal solutions. Kellner et al. (2019) proposed an algo-
rithm to solve the supplier selection problem integrating risk 
and sustainability requirements. 

One common feature throughout the literature of Pareto effi-
cient allocations models are their strong dependence on a 
practical context. For example, mathematical programming 
approaches build models that are heavily application–
specific, leaving little room for more general uses. The col-
oured–edge chain graph model proposed by this work is 
more general, and focuses on the generation of Pareto effi-
cient allocations which can be further analyzed by post–
optimal analysis techniques. As far as the literature is con-
cerned, approaches based on graphs have been rarely used in 
the context of the Pareto fund allocation problem. 

This work addresses the problem of fund allocation when 
allocation decisions are sequentially made (Mamat et al., 
2014). The aim is to develop a graph model capable of de-
termining Pareto efficient allocations. To do this, the model 
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is based on a graph called the coloured–edge chain graph, a 
sub-group of the general coloured–edge graph introduced by 
Ensor and Lillo (2016). Colours are assigned to competing 
activities and edges model allocation alternatives. Pareto 
efficient allocations are calculated by applying a shortest 
path algorithm based on a partially ordered principle. 

The remainder of manuscript is organized as follows: Sec-
tion 2 introduces the coloured–edge chain graph as a model 
for estimating Pareto efficient allocations. Section 3 explores 
the use of the model in the context of fund allocation prob-
lems. Two upper bounds on the number of Pareto efficient 
allocations are determined in Section 3.2. The model is then 
tested in Section 4 to inspect the behaviour of the number of 
Pareto efficient allocations, and applied to a real-world case 
as presented in Section 5. Finally, some conclusions and 
further research directions are provided in Section 6. 

2. THE COLOURED–EDGE CHAIN GRAPH 

Definition 2.1. A weighted coloured-edge chain graph G = 
(V, E, ω, λ) consists of a directed multi-graph (V,E) with a 
ordered vertex set V = {1,2,3,…,n}, where n- |v|, an edge set 
E by which G only has edges euv ϵ E for v = u + 1, a weight 
function ω: E → R+, and a (surjective) colour function λ: E 
→ M, where M is a set of possible colours for the edges.  

A coloured–edge chain graph uses the colour set M to repre-
sent allocation alternatives. In the context of budget alloca-
tion, such units are any kind of economic activity requiring a 
portion of a total available budget. Associated with each 
edge e ϵ E, there is an initial vertex u ϵ V and a terminal ver-
tex v ϵ V, a weight ω(e) ϵ R+, and a colour λ(e) ϵ M Note that 
the total number of edges of a single colour is given by n-1. 

The graph G is said to be finite if both V and E are finite 

sets, in which case M is also finite. 

As a simple example, consider the following coloured–edge 

chain graph with three possible colours M = {red, green, 

blue} 

 

Definition 2.2. Let u and v be two given vertices of G. A 

coloured–edge path puv is a sequence of edges of the form 

 
11322110 ,...,,...,,

xlxxxxx eexexe


, joining vertices u = x0  

and v = x1, where each xi ϵ V. The path is called simple if the 

vertices lxxx ,...,, 10 are all distinct.  

Paths in the weighted coloured–edge chain graph have an 
associated total weight, which is defined as follows: 

Definition 2.3. For any path  lxlxxuv xexexep 12110 ,...,,   

from a vertex 0xu   to a vertex v= xi and any colour c ϵ M 

the path weight in colour c  is defined by:  

   )(),()( 11 ixiixiuvc xecxep   

namely the sum of the weights for those edges that have col-

our c.  

The weight of a path is represented as a k–tuple (ωc1(puv),…, 
ωci(puv),…, ωck (puv)), giving the total weight of the path in 
each colour. This k–tuple is a budget allocation alternative. 
The total amount of resources allocated for each economic 
activity ci is given by the total weight ωci(puv). 

From a computation standpoint, the goal is to determine 
paths in a coloured–edge chain graph whose weights satisfy 
a specific criterion. Such a criterion is established by a pref-
erence relation on path weights. 

Definition 2.4. Let puv be the set of all paths from u (source) 

to v (destination) in G. The cardinality of this set is given by 

kn-1. A binary relation between two paths puv and p’uv in puv, is 

defined by puv < p’uv if and only if ωc(puv) < ωc (p’uv) for all c.  

The relation < is clearly reflexive and transitive and gives a 
partial order on the k-tuple path weights, but only a preorder 
on the paths themselves as multiple paths might have the 
same total path weight. 

The imposition of a preference relation on puv produces a 
subset composed of only minimal paths. All tuples in this set 
come with a special property termed Pareto efficiency. 

Definition 2.5. The set of Pareto efficient allocation paths, 
Muv, is a set of paths joining two vertices u and v in a 
weighted coloured–edge chain graph such that Muv = { puv ϵ 
puv|  p’uv ϵ puv with ω(p’uv) ≠ ω(puv), Ǝ colour c such that ωc 
(puv) < ωc (p’uv)}.  

This set has an important characteristic: for any puv ϵ Muv, it 
is impossible to determine a path p’uv  from u to v which has 
smaller weight than puv in some of its k colours without at 
least one of the other weights being larger, analogously to 
Martins (1984). 

3. COLOURED–EDGE CHAIN GRAPH AND FUND 
ALLOCATION 

Given a fund, a time horizon and a group of activities com-
peting for the fund, a decision maker must decide how to 
allocate it to activities for that period of time. According to 
Mamat et al. (2014), a sequential allocation process (one 
stage at a time) is more convenient since an investor can 
minimize risk by previously knowing the sequence of in-
vestment. The coloured–edge chain graph modelling ap-
proach addresses this issue, as nodes represent time stages, 
colours identify activities (projects, departments, areas, etc.) 
and coloured edges are allocation alternatives between stag-
es. 

The following case provides an application of the approach 
in the context of sequential fund allocation. 

3.1. Sequential Investment (Kwan and Yuan, 1988) 

Consider that k independent projects need to be undertaken 
under a time horizon T. Such a horizon is divisible in a dis-
crete time scale so that T = {1,2,…,i,…,n-1, n} (week, 
month, year, etc.). All projects are available at the beginning 
of period i so that an amount of investment must be allocated 
for each project between i and i+1. Note that no constraint is 
imposed on the amount of investment available for a period 
i. In terms of the coloured–edge chain graph, n+1 vertices 
are needed to represent time periods (period n+1 closes the 
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process), each coloured edge between two vertices posses a 
real weight ω(e) that represents the investment allocated for 
the project. Therefore, each sequence of projects from period 
1 to n+1 corresponds to a path in a coloured–edge chain 
graph. As a result, the path weight (ωc1(puv), …,  ωci (puv),…, 
ωck (puv)) shows the total investment given to each project for 
time horizon T1. 

As an illustration, consider projects A, B and C to be per-
formed within two months. For the first month, 4.0, 2.0 and 
1.0 dollars are allocated for Project A (red), B (blue) and C 
(green), respectively. For the second month, 3.0 dollars are 
allocated for projects A and B, and 2.0 dollars for project C. 
The resulting coloured–edge chain for this case is: 

 

Nine paths are identified from vertex v0 to vertex v2. The 
corresponding weights are (7,0,0), (4,3,0), (4,0,2), (0,5,0), 
(3,2,0), (0,2,2), (0,0,3), (3,0,1) and (0,3,1). After applying 
Definition 2.5, this set of path weights becomes (7,0,0), 
(0,5,0), (3,2,0), (0,2,2), (0,0,3), (3,0,1) and (0,3,1). These 
tuples are sequential investment options satisfying the Pareto 
efficient principle. Thus, tuple (3,2,0) indicates a fund of 3 
dollars is given to project A, 2 dollars are for project B and 
no fund is assigned for project C.  

3.2. Number of Pareto Efficient Allocations 

This section focuses on establishing the number of Pareto 
efficient tuples, in other words, the cardinality of Muv. The 
interest in such a number is related to the tractability of the 
approach. Most allocation problems require constraints to be 
made to make application–specific optimal allocations trac-
table. So if the set of Pareto efficient paths Muv has manage-
able cardinality then the application–specific criteria can 
only be applied to this set. 

The following lemma develops a bound for Muv when a col-
ored–edge chain is used to model sequential funding prob-
lems. 

Lemma 3.1. Let G be a coloured–edge chain graph with n 
vertices and k colours for which the weights of the edge ec 
from vi to vi+1 satisfy the following condition: 

1. For all colours c, c’, the edges ec and ect from vi to vi+1 

have the weight given by ω(ec) = ω(ect) = 2i-1. 

Then Muv has cardinality kn – 1.  

Proof. The proof goes by induction on k. Let hk (n) be the 
number of minimal paths in a coloured–edge chain G with n 
vertices (n > 1)) and fixed number of colours k. The base 
case hk (1) = 1 clearly holds. For the inductive hypothesis, 
assume that hk (m) = km-1 holds for any exponential 
weighted coloured–edge chain with m vertices. Consider 

                                                      

1 Note that by Definition 2.2 only one project is “picked” at each period. 

This is consistent with investment choices where “all or nothing” decisions 

are made. 

now an exponentially weighted–coloured–edge chain with 
m+1 vertices and consider two distinct paths p = {e12, e23,…, 
em+1 m} and p’ = {e12’, e23’,…, em+1 m’}. 

from v1 to vm+1. To show that p and p’ are incomparable, con-
sider two possible cases: (i) If em m+1 = em m+1’ so p and p’ 
share the same edge from vm to vm+1 then p = {e12, e23,…, em-1 

m} and p’ = {e12’, e23’,…, em-1 m’} are distinct paths from v1 to 
vm so by inductive hypothesis they must be incomparable. 
Hence p and p’ are incomparable too.(ii) If em m+1 ≠ em m+1’so 
the edges em m+1 and em m+1’from vm to vm+1 with weight 2m-1 
have different colours c and c’ then . ωc(p) > 2m-1 > 1 + 2 + 4 
+…+ 2m-2 > ωc(p’) Whereas ωc(p) < 1 + 2 + 4 +…+ 2m-2 < 2m-

1 < ωc(p’). Hence p and p’ are incomparable and hk (m+1) = 
hk (m) × k = k(m+1)-1 

Lemma 3.1 illustrates the intractability of the problem. How-
ever, the condition required by this lemma is very unlikely 
when independent random variables are used to represent 
fund allocations (weights). 

Corollary 3.2. Suppose G is a coloured–edge chain satisfying 
the condition of Lemma 3.1 with k colours and n vertices and 
whose k(n – 1) edge weights are independent random varia-
bles. Then the probability that Muv has cardinality k(n – 1) is at 
least ((n – 1)!)-k.  

Proof. Note that the vertices of a path in a pure colour c can 
be rearranged without affecting the path weight. Then the 
weights ωc (e1), ωc (e2),…, ωc (en-1) can be arranged in (n+1) 
ways, which are all equally likely. The desired probability is 
obtained when the k pure colour paths are considered. 

Corollary 3.2 indicates that it is hard for an intractable case 
to occur in practice. This fact is advantageous for the devel-
opment of algorithms capable of exploiting the structure of 
coloured–edge chains. However, algorithmic issues related 
to coloured–edge chains still need to be addressed. 

A special case of the model is when weights are given by the 
weight function ω:E{1}which assigns the value 1 to each 
edge. In addition, the path weight (ωc2(puv), …,  ωci (puv) ,…, 
ωck (puv)) represents a feasible allocation, a tuple for which . 
ωci(puv)+ …+  ωci (puv) +…+ ωck (puv) = r. 

Where r is an integer positive value that could represent a 

number of monetary units. The set containing all feasible 

tuples corresponds to puv. Therefore, the Pareto efficient al-

locations are identified by applying definition 2.5 to puv. 

Analogously, this special case can be formulated as the 
number of ways the integer quantity r can be partitioned so 
that each partition contains K elements satisfying the feasi-
bility constraint. In this case, each partition corresponds to a 
feasible tuple that could (or could not) be Pareto efficient. It 
is noted that this resembles a subset selection and integer 
partition problem. 

To illustrate an application, consider r = 2 monetary units to 
be allocated among k = 3 activities. Thus, T = {1,2,3} corre-
sponds to the allocation stages. The three activities are al-
ways available between two consecutive stages. The alloca-
tion plan implies that the first dollar must be allocated at 
Stage 1 and the second dollar allocated at Stage 2. Stage 3 
closes the process. This example is modelled by a coloured–
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edge chain with three colours (red, blue and green) and three 
vertices: 

 

The resulting allocations are the tuples (2,0,0), (0,2,0), 

(0,0,2), (1,1,0), (1,0,1), (0,1,1), (1,1,0), (1,0,1), (0,1,1). These 

tuples constitute the set Puv. By applying Definition 2.5, the 

set of Pareto efficient allocations Muv turn out to be (2,0,0), 

(0,2,0), (2,0,2), (1,1,0) (1,0,1), (0,1,1). Thus, the Pareto effi-

cient tuple (2,0,0) is a fund allocation plan in which 2 mone-

tary units are allocated to the first activity and no monetary 

units are allocated for the second and third activity. 

To establish the cardinality of 
uv for Problem (2), two 

lemmas must first be introduced.  

Lemma 3.3. Let 0n  and 1k . Then the following com-

binatorial equality holds  
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Proof. Use induction on n for fixed k. For n = 0 the equality 

holds since 
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Then for m + 1  
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Hence equality 3.1 holds for m + 1.  

Lemma 3.4. Let 
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Proof. Induction on k is used to prove that 
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possible values 0,1,2,…,n for xj+1, there are 
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Sn j+1. Hence 
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 by Lemma 3.3. Hence equality 

3.2 is true by induction. 

As a corollary of the last lemma the number of Pareto effi-

cient allocations for a k coloured–edge chain with n vertices 

is obtained.  

Corollary 3.5. For a coloured–edge chain graph with n verti-
ces and k colours where edge weights equal to 1, the set of 
Pareto efficient allocation paths Muv have cardinality f (n, k) 
given by  

 (3.3) 

Proof. It is enough to show that any tuple (x1,x2,…,xk), where 

1
1 


n

i
nxi , is attainable by some path P in the chain and 

all such tuples are Pareto efficient. The path P can be con-

structed to have weight (x1,x2,…,xk) by taking the first x2 

edges of the path in colour c1, then the next x2 edges in col-

our c2 and so on. Furthermore, any two distinct tuples 

(x1,x2,…,xk) and (x1,x2,…,xk,) must be Pareto efficient as 

.1
11  


k

i i

k

i i xnx  

Note that, if for all colours the edges in a particular colour 

have the same weight, then equality 3.3 still holds for a k–

coloured chain with n vertices. 

The pattern in f (n, k) is identified by tabulating this function 

for small values of k and taking an arbitrary fixed n (see Ta-

ble 1).  
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Table 1. Values of f (n, k) for Several Values of k. 

k  f (n, k) 

2 n 

3 

2

)1( nn
 

4 

6

)2)(1(  nnn
 

5 

24

)3)(2)(1(  nnnn
 

Observe that the number of Pareto efficient paths for a fixed 
k is given by nk-1 / (k-1) for k > 1. The term nk - 1 corresponds 
to a raising factorial power of n (Graham et al. 1994).  

Note also that the pattern corresponds to the figurate num-
bers (Wunderlich, 1962). The recursive structure of these 
numbers can be used for the implementation of algorithms 
based on dynamic programming approaches. In other words, 
the number of Pareto efficient allocations given by f (n, k) 
can be computed by the recurrence f (n, k) = (n +k – 2) * f (n, 
k - 1). 

3.3. Model Considerations 

Using the coloured–edge chain graph as a modelling tool for 
fund allocation problems has the advantage of being simple 
and explicit. A coloured–edge chain graph is able to deliver a 
straightforward representation of a funding process without 
needing a high level of mathematical abstraction. All infor-
mation can be easily displayed by just employing vertices, 
edges and colours. 

In terms of implementation, the model works for a discrete 
time horizon and allocations are made in a sequential form. 
In addition, both the set of alternatives (colours) and time 
horizon (T) must be fixed. Note that a Pareto efficient path is 
a sequence of activities selected at each stage so that if such 
a path (funding plan) needs to be implemented, then only one 
activity must be funded at each stage. In practice, this im-
plementation fits some fund capitalization schemes such as 
the Chilean pension system where individuals move their 
capitals from one group of financial assets to another in a 
regular basis. This is illustrated in a subsequent section. 

Finally, the Pareto efficient tuples can be elicited by apply-
ing a shortest path algorithm that considers the chain graph 
G as main input. Section 4 explains more about the imple-
mentation of this algorithm. 

Although the focus is the generation of Pareto efficient allo-
cations, the resulting Pareto set can be further scrutinized by 
applying constraints or heuristics capable of extracting spe-
cific fund allocations. These constraints or heuristics are 
responsible for connecting the model to a specific applica-
tion. 

 

4. TESTING THEORETICAL RESULTS 

The number of Pareto efficient allocations, Muv, is investigat-
ed for coloured–edge chain graphs that meet the conditions 
of Problem (1) and Problem (2). The main idea is to experi-
mentally ratify the polynomial and exponential behaviour of 
the number of efficient allocations. 

Pareto efficient allocations are elicited by a coloured–edge 
chain when a shortest path algorithm is applied. However, 
most algorithms for shortest path problems consider the 
weights of the paths to be linearly ordered. In order to cor-
rectly compute Pareto efficient allocations from a coloured–
edge chain graph, a shortest path algorithm must be adjusted 
to handle partially ordered paths. 

Table 2. Exponential fit of Muv Cardinality for Several Values of 

k. 

k Exponential Function for Muv Cardinality 

2 f (n, 2) = exp (0.6932n) 

3 f (n, 3) = exp (1.0986n) 

4 f (n, 4) = exp (1.3863n) 

For this task, the well–known Dijkstra’s algorithm is adapted 
to process path weights that are partially ordered. Further-
more, a priority queue is used as the main data structure for 
storing path estimates. More information about Dijkstra’s 
algorithm can be found in Sniedovich (2006) and Ensor and 
Lillo (2016), where a review of the algorithm and an adapta-
tion for weighted coloured–edge graphs are respectively pro-
vided. 

Experiments are performed for coloured–edge chains with 
different k–valuesand values of n between 10 and 100. The 
algorithm reports the cardinality of Muv for each of the n ver-
tices, but only the cardinality of the final vertex is considered 
in the analysis. 

Fig. (1) shows the behavior of Muv for the coloured–edge 
chain satisfying the condition of Lemma 3.1. A logarithm 
scale is used for horizontal and vertical axes. A regression 
analysis is performed in order to fit the curves to an expo-
nential function2. Table 2 shows the functions for each value 
of k. 

 

Fig. (1). Cardinality of Muv for coloured–edge chain graphs with 

different number of colours k. 

                                                      

2 A regression tool in Microsoft Excel is applied for this task. 
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Fig. (2) shows the experimental analysis for coloured–edge 
chains whose weights are set to 1. The order of Muv cardi-
nality is determined by applying a polynomial regression 
analysis between logn and the logarithm of the studied varia-
ble. In this way each curve is fitted to a polynomial. The 
exponent of the first term corresponds to the order of Muv 
cardinality. Table 3 shows the polynomials for each value of 
k. 

This numerical analysis shows that the number of competi-
tive activities is more limiting than the number of planning 
periods when a sequential funding problem is computational-
ly addressed. However, it should be noted that the condition 
for Lemma 3.1 will be hard to find in practical problems. 

5. APPLICATION CASE: THE CHILEAN PENSION 
SYSTEM 

The Chilean pension system is based on an individual capi-
talization scheme. This system relies on private companies 
(AFPs) that seek to improve pensions by maximizing indi-
vidual capitalization funds. These companies can invest pen-
sion savings in either national or international financial as-
sets, thereby diversifying the financial risk (Blake, 2015). 

 

Fig. (2). Cardinality of Muv for coloured-edge chain graphs with 
different number of colours k. 

Table 3: Polynomial fit of Muv cardinality for several values of 

k. 

k  Polynomial for Muv cardinality 

2 f (n, 2) = n  

3 f (n, 3) = 0.5n2 + 0.5n – 10-12 

4 f (n, 4) = 0.1667n3+ 0.5n2 + 0.3333n – 2 * 10-9 

5 f (n, 5) = 0.0417n4+ 0.25n3 + 0.4583n2 + 0.25n – 2*10-7 

This pension system operates by periodically allocating in-
vestments between national and international financial as-
sets. With this in mind, the process of selecting an invest-
ment option time after time can be modelled by a coloured-
edge chain graph. Once it is built, the graph can provide all 
investment sequences that satisfy the Pareto efficient princi-
ple without resorting to any type of mathematical program-
ming approach. Each of these sequences is represented by a 

tuple that contains the total investment for each alternative. 
The set of all Pareto tuples (Muv) can be further investigated 
by employing post-optimal analysis techniques. This is an 
important feature since Pareto efficient allocations are not 
necessarily optimal (Barr, 2020). Optimality implies the def-
inition of an objective function on path weights so that tuples 
are transformed into a single value. 

To build the coloured-edge graph model, monthly AFP in-
vestment data from 2019 is obtained3. The investment alter-
natives correspond to national (NI) as well as international 
(II) financial assets. Table 4 shows the investment accumu-
lated each month for both NI and II (values are expressed in 
millions of dollars).  

Table 4. Millions of US$ invested by AFPs in national (NI) as 

well as international (II) financial assets for year 2019 (Monthly 

data from https://www.spensiones.cl/). 

Month NI II 

Jan 114782.68 80437.47 

Feb 115158.65 81733.32 

Mar 115238.44 86414.53 

Apr 116312.26 88684.65 

May 119359.60 87135.54 

Jun 122379.22 89239.36 

Jul 128211.46 90224.10 

Aug 131575.16 88318.24 

Sep 133639.36 90316.50 

Oct 127658.17 93904.53 

Nov 119170.73 109071.44 

Dec 128175.22 100069.20 

The difference between two consecutive values are comput-
ed to determine the monthly estimate of both the investment 
allocated in national financial assets and the investment allo-
cated in international financial assets (negative values are not 
considered). These amounts are weights in the colored edge 
chain graph whereas the vertices correspond to months. Once 
it is built, the algorithm developed by Ensor and Lillo (2016) 
is applied to produce the final Pareto set. Figure 3 shows the 
Pareto set obtained for 2019. Each tuple in the table shows 
the total amount invested in both national (TNI) and interna-
tional (TII) financial assets. These tuples are plotted in a 
graph in order to describe corresponding Pareto set (see Fig-
ure 3). 

Note that a post–optimal analysis can be performed from the 
Pareto set provided so that the total investment is an increas-
ing 2–ary function of the summed weight in each type of 
financial asset (national or international). For example, a 
question could be how much the investment allocated to ei-

                                                      

3 https://www.spensiones.cl/ 



140   Review of Economics and Finance, 2020, Vol. 18, No. 1  Felipe Lillo et al. 

ther a national or international financial asset could be in-
creased or decreased so that the current paths remain mini-
mal. As an illustration, if path P8 in Fig. (3) is picked as an 
investment plan (minimum total investment), an increase of 
over 9.0% in its relative TNI would make path P7 better. 
Table 5 shows path P8 obtained from the algorithm as an 
investment plan.  An advantage of the proposed model is that 
different objective functions can be evaluated on paths in the 
Pareto set or a post–optimal analysis performed without hav-
ing to rerun the algorithm. 

Table 5. Path P8 as an Investment Plan. 

Period TNI TII 

Jan-Feb 0 375.97 

Feb-Mar 0 79.78 

Mar-Apr 0 1073.82 

Apr-May 0 0 

May-Jun 2103.82 0 

Jun-Jul 984.71 0 

Jul-Aug 0 0 

Aug-Sep 1998.25 0 

Sep-Oct 0 0 

Oct-Nov 0 0 

Nov-Dec 0 0 

Total 5086.79 1529.57 

6. CONCLUSIONS 

In the study of fund allocation problems, a central question is 
whether funds may be allocated in such a way that the Pareto 
principle is satisfied. This paper introduced a graph model-
ling approach that uses a partially ordered shortest path algo-
rithm to obtain a Pareto set of efficient allocation paths. Alt-
hough a straightforward approach would be to model se-
quential fund allocations in which there are several invest-
ment alternatives, it does not give a new perspective and is 
not a truly general approach. A defining feature of our ap-
proach is the generation of a Pareto set which can be further 
investigated by means of a post–optimal analysis. This 
means a decision maker can directly apply constraints to the 
final Pareto set for identifying feasible allocations (tuples) 
without running the algorithm again. 

The tractability of the approach depends on the cardinality of 
the final Pareto allocation set. Despite Lemma 3.1 showing 
an exponential order in the number of Pareto minimal paths, 
Corollary 3.2 supports that intractability is rare in practice 
unless budget allocations are set in very particular way. 

A special case of the model is when graph weights are set to 
1; such a case becomes useful when an integer quantity must 
be partitioned into Pareto efficient subsets. In practice, this 
quantity can be a money fund that has to be assigned to pro-
jects. This case is amenable to computation since the number 
of Pareto efficient paths is polinomially bounded. 

Future research can tackle the application of computational 
implementations of the graph approach to areas outside the 
field of fund allocation. 
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Path Path Weight 

 TNI TII 

P1 2982.97 4549.19 

P2 13333.97 0 

P3 6382.64 1153.60 

P4 0 12445.63 

P5 984.72 6613.39 

P6 8652.75 79.78 

P7 3193.55 3593.77 

P8 5086.79 1529.57 

P9 2280.56 6237.42 

P10 7356.91 455.75 

P11 4384.38 3217.8 
 

 

Fig. (3). Minimal path weights and corresponding Pareto set (Muv) for total national (TNI) and international (TII) investments 

(million of US$). 
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